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Tomasz Buchert

Supervisor
prof. dr hab. Wojciech Gajda

Poznań 2011



Poznań, dnia . . . . . . . . . . . . . . .

Oświadczenie

Ja, niżej podpisany Tomasz Buchert, student Wydziału Matematyki i Infor-
matyki Uniwersytetu im. Adama Mickiewicza w Poznaniu oświadczam, że przed-
kładaną pracę dyplomową pt.: On the twin prime conjecture, napisałem samo-
dzielnie. Oznacza to, że przy pisaniu pracy, poza niezbędnymi konsultacjami, nie
korzystałem z pomocy innych osób, a w szczególności nie zlecałem opracowania
rozprawy lub jej części innym osobom, ani nie odpisywałem tej rozprawy lub jej
części od innych osób.

Oświadczam również, że egzemplarz pracy dyplomowej w formie wydruku
komputerowego jest zgodny z egzemplarzem pracy dyplomowej w formie elek-
tronicznej.

Jednocześnie przyjmuję do wiadomości, że gdyby powyższe oświadczenie
okazało się nieprawdziwe, decyzja o wydaniu mi dyplomu zostanie cofnięta.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Chapter 1
Introduction

1.1 Prime numbers

The prime numbers are mysterious objects. First few of them are

2,3,5,7,11,13,17,19,23,29, . . .

In Carl Sagan’s novel Contact, the extraterrestrial race used them to write a mes-
sage for humans, a message that was easily distinguishable from random noise
and was a sign of intelligence. It seems that the prime numbers are universal
objects, an idea that must come to minds of sufficiently intelligent beings. Also,
we do not know any natural, physical phenomena generating prime numbers.
At first, there is no apparent structure in the prime numbers. They seem to ap-
pear in a random fashion, constantly popping out from the natural numbers. It
is not even known beforehand, if there are infinitely many of them. Of course, if
the set of prime numbers would be finite, they probably would not be interesting
anymore. Fortunately we know that this is not the case.

There are deep patterns in the behavior of prime numbers, patterns very in-
tricate and subtle. They become apparent when we stop to look at each of them
separately, but start to see the prime numbers as a whole entity. Then the pat-
terns emerge in a fruitful process: the number of primes below a given bound
seems to be a conceivable function, the average number of divisors and prime
divisors seems to be not random after all, and so on. Instantly, the prime num-
bers show a deep connection to the mathematical analysis, theory of probability,
topology and other fields in mathematics.

Until very recently, the number theory was considered only a pure branch of
mathematics, with virtually no practical application in the real life. It is Hardy
who said in his A Mathematician’s Apology: “No one has yet discovered any war-
like purpose to be served by the theory of numbers or relativity, and it seems un-
likely that anyone will do so for many years.” A sensible statement for a pacifist,
but, as we know now, this turned out to be wrong. The number theory is prac-
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tical: every day millions of people use RSA encryption scheme and complicated
ciphers without even knowing about it. Finally, probably to Hardy’s despair, the
number theory found it’s way to the military too.

People who approach the number theory for the first time, may be startled
how simple the problems seem to be. For example, one may ask what is difficult
in the following problem: find positive integers x, y, z and n ≥ 3, such that

xn + yn = zn .

Of course, such problems only seem to be simple. The history has proven that the
problem above is tremendously difficult and was tantalizing the mathematical
community for few centuries. As we know, only in 1995 Andrew Wiles proved that
there are no numbers satisfying the equation above. It’s rather common knowl-
edge that short questions (e.g., Does God exist? What is love?) may have com-
plicated answers or no satisfactory answer at all. Yet, people tend to think that
in this particular case it is not true, and for that reason Fermat’s Last Theorem
was attracting so many amateurs (Fermat himself was a successful, yet not pro-
fessional mathematician).

There is no way to distinguish hard problems from the easy ones. As we know,
the equation

x2 + y2 = z2

was solved in antiquity, just like the fact that the number of primes is infinite. But
we may ask more questions: how many primes are there below a certain num-
ber, are there infinitely many prime numbers in arithmetical progressions, are
there infinitely many pairs of primes whose difference is exactly two? The first
two questions are already answered, the last one remains unsolved and we will
talk about it later. The novelty of the approach to these problems was to use the
complex analysis, a field of mathematics normally not attributed to the number
theory. Probably the most famous child that this marriage gave birth to is the Rie-
mann Hypothesis. It asks if all the non-trivial complex zeros of the Riemann Zeta
Function lie on a, so called, critical line. This question seems to be more com-
plicated than the statement of Fermat’s Last Theorem. Also, there is no obvious
connection with other number theory problems. However, the positive answer to
the Riemann Hypothesis would change the number theory and mathematics as
we know it.

The third problem above, i.e., are there infinitely many pairs of primes whose
difference is exactly 2, is known as the Twin Prime Conjecture. The first few twin
prime pairs are

(3,5), (5,7), (11,13), (17,19), . . .

There is a strong empirical and heuristic evidence, as we will see, that this con-
jecture is true. One must be careful, however, to not become biased by it. The
Mertens’ Conjecture postulated that∣∣∣∣∣ n∑

k=1
µ(k)

∣∣∣∣∣<p
n
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for any n. This claim has been checked for n < 1014, but an indirect proof showed
that it is false. Interestingly, the proof of Mertens’ Conjecture would imply Rie-
mann Hypothesis.

The Twin Prime Conjecture is possibly the most basic question one may ask,
after they are satisfied with the Prime Number Theorem. There are probably no
direct, practical conclusions that can be drawn from the Twin Prime Conjecture.
But, just as was in the case of Fermat’s Last Theorem, research toward the un-
proven conjecture usually yields some additional understanding and tools that
can be used in other situations. The Twin Prime Conjecture already spawned a
modern tool of combinatorial and analytic number theory – the sieve theory.

The sieve theory was established at the beginning of the 20th century as a
simple method to count prime numbers in intervals. Today it is a powerful tool to
approach problems related to the Twin Prime Conjecture, e.g., Goldbach’s Con-
jecture. It was already used to prove countless partial results supporting many
conjectures and apparently there is much more for sieves to do.

Why is that so, that the Twin Prime Conjecture resists any attempts to prove
it? There is a fundamental difference between the question about the infinitude
of prime numbers and the infinitude of twin prime pairs. The latter one involves
not only multiplicative properties of numbers, but also additive properties. These
two branches of number theory have numerous books dedicated to each of them
separately. The history shows that the most difficult problems are those, which
involve both domains.

It is a shame that the truth about such basic facts is hidden from us. Hope-
fully, one day we will understand the primes or, as Paul Erdős once said: “It will
be another million years, at least, before we understand the primes.”

1.2 The goal and structure of the thesis

The main goal of this work is to present the current state of knowledge about the
Twin Prime Conjecture and prime sieving algorithms – the only practical way to
compute Brun’s constant.

In the Chapter 2, we discuss and prove some important theorems on the
prime numbers as they will be used throughout this work.

The Chapter 3 is dedicated to the description of the current knowledge about
the twin prime numbers and related problems. We also show few important ways
to characterize the twin prime pairs, and we simplify and generalize slightly some
original proofs (Theorem 17).

In the next chapter, i.e., the Chapter 4, the exposition of the most important
prime sieving algorithms is given. We prove the correctness of presented algo-
rithms, compute their complexity and also deduce theoretical bounds on the
complexity of any sieving algorithm. We also present an elementary method to
prove two theorems used by Atkin’s Sieve (Theorems 20 and 23).
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In the Chapter 5 we introduce basic sieve methods, in particular, we consider
the sieve of Brun. The goal of this chapter is to show the famous theorem of Brun
about sum of reciprocals of twin primes.

In the penultimate chapter, the Chapter 6, we present a result of computation
performed to obtain values of constants related to the Twin Prime Conjecture. In
particular we show how fast convergent series for the twin prime constant can
be obtained and we compute the twin prime constant to 15000 decimal digits.
To our knowledge, this is the most precise computation so far.

The last chapter summarizes and concludes the whole thesis.

1.3 Notation

We mostly use the standard mathematical notation, but there are some excep-
tions. Throughout the thesis we use “log” symbol for the natural logarithm. We
also use Landau’s notation of “big O” and “small o”. Moreover, to shorten the no-
tation, if the sum is over p, then this implicitly means that the sum is over prime
numbers. Therefore ∑

p≤x
1 = ∑

p∈P
p≤x

1,

where P is the set of prime numbers. Additional notation may be introduced
when needed.

1.4 References

The work presented in this thesis would not be possible without help of the lit-
erature.

The Chapter 2 is mostly backed up by [2] and other classical positions on the
number theory. Some proofs are taken from the works of other authors, e.g., the
proof of Theorem 1 by Erdős ([16]).

The Chapter 3 is based on publications concerning the Twin Prime Conjec-
ture, in particular [23] and [41]. The part about related problems is a compilation
of various sources ([12], [22], [41], among others), with figures computed in Sage
([39]). The current computational records were taken from [6] and [14]. The ways
to characterize the twin primes come from many publications: [8], [29], [30] and
[36].

The prime sieving algorithms in the Chapter 4 are presented in the literature
on the computational aspects of the number theory, most notably in [11] and
[41]. The algorithms themselves were presented also in [3], [33] and [34]. A big
part of the discussion is backed up by additional sources ([13], [15], [37], [42]).

The Chapter 5 follows mostly [9], [24] and [40], but is built around [5].
The computation of the related constants in the Chapter 6 required the fol-

lowing software: [4], [20] and [28]. To obtain a feasible formula for the twin prime
constant, [17] was used.
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Chapter 2
Prime numbers

2.1 Basic theorems

It is a common knowledge that there are infinitely many prime numbers. We
present a beautiful proof of this fact, a proof that actually shows that the series
over all primes ∑

p

1

p

diverges. Hence there must be an infinitude of primes.
This proof was published in an article of P. Erdős from 1938 ([16]) and is con-

sidered to be a “proof from the book” ([1]).

Theorem 1 (Infinitude of primes). The series (P - set of all prime numbers)∑
p∈P

1

p
(2.1)

diverges.

Proof. Let pi be the i -th prime number. Assume that (2.1) converges. Thus, there
must be an index k, such that ∑

i≥k+1

1

pi
< 1

2
. (2.2)

Let N be an arbitrary natural number. Let N1 be a number of positive integers
n ≤ N divisible only by primes p1, p2, . . . , pk , and N2 be a number of positive in-
tegers divisible by at least one pi where i > k. Clearly, N1 +N2 = N .

Let’s estimate N2. There are exactly
⌊

N
p

⌋
numbers n ≤ N divisible by p. This,

together with (2.2), gives

N2 ≤
∑

i≥k+1

⌊
N

pi

⌋
≤ N

∑
i≥k+1

1

pi
< N

2
,
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as we count some numbers more than once.
Let’s take a look at N1. Every number n ≤ N can be written as a product n =

anb2
n where an is squarefree. If n is only divisible by primes up to pk , we may

have at most 2k different squarefree parts of n (we may either include or not
include each prime). If it comes to the square part, we note that bn ≤p

n ≤p
N .

Therefore, there are at most 2k
p

N such numbers, and we have N1 ≤ 2k
p

N .
But if we take N = 22k+2, this leads to

N = N1 +N2 < N

2
+2k

p
N = 22k+1 +22k+1 = N ,

a contradiction that finishes the proof.

Knowing the divergence of this series is not enough. We want to know pre-
cisely what is the character of this divergence, i.e., how it behaves asymptotically.

2.2 Mertens’ theorems

The goal of this section is to prove the following famous theorem:

Theorem 2 (Mertens’ Second Theorem). For x ≥ 2 we have

∑
p≤x

1

p
= loglog x +B +O

(
1

log x

)
(2.3)

for some constant B.

Let’s start with some basic definitions.

Definition (p-adic valuation). Let p be a prime and n a positive integer. Then

νp (n) = k (2.4)

if and only if pk | n, but pk+1 - n.

It is easy to see that νp (nm) = νp (n)+νp (m). Also if νp (n) = k then n = pk m
where p -m. In that case we will write pk ∥ n.

To obtain a value of νp (n!) we will prove

Theorem 3 (Legendre’s Theorem). Let p be a prime and n be a positive number.
Then

νp (n!) =
∑
i≥1

⌊
n

p i

⌋
. (2.5)

6



Proof.

νp (n!) =
∑

1≤i≤n
νp (i ) =

∑
1≤i≤n

∑
j≥1

νp (i )= j

j = ∑
j≥1

∑
1≤i≤n
νp (i )= j

j =

= ∑
j≥1

j
∑

1≤i≤n
νp (i )= j

1 = ∑
j≥1

j
∑

1≤i≤n
p j ∥i

1 = ∑
j≥1

j

(⌊
n

p j

⌋
−

⌊
n

p j+1

⌋)
=

= ∑
j≥1

j

⌊
n

p j

⌋
− ∑

j≥1
j

⌊
n

p j+1

⌋
= ∑

j≥1
j

⌊
n

p j

⌋
− ∑

j≥2
( j −1)

⌊
n

p j

⌋
=

=
⌊

n

p

⌋
+ ∑

j≥2

⌊
n

p j

⌋
= ∑

j≥1

⌊
n

p j

⌋
.

It will be convenient to also define the following function:

Definition (The first Chebyshev function). For x ≥ 1, we define the first Cheby-
shev function as

ϑ(x) = ∑
p≤x

log p . (2.6)

P. L. Chebyshev proved in 1850 the famous Bertrand’s postulate.

Theorem 4 (Bertrand’s postulate, Chebyshev’s Theorem). For every n > 1 there
exists a prime number p, such that

n < p < 2n.

With sufficient bounds on the function ϑ, one can get a simple and elementary
proof of Bertrand’s postulate ([1, pages 7–10]). We will prove the following fact
needed in our discourse.

Theorem 5 (Bounds on the first Chebyshev function). There exist positive con-
stants c1 and c2, such that for x ≥ 4

c1 ≤ ϑ(x)

x
≤ c2. (2.7)

In particular
ϑ(x) =O (x) .

Remark. Prime Number Theorem (Theorem 13) is equivalent to the fact that

lim
x→∞

ϑ(x)

x
= 1.
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Proof of Theorem 5. Let’s start with a clever observation about
(2n

n

)
. Namely, for

every prime p, such that n < p ≤ 2n, p | (2n
n

) = (2n)!
(n!)2 since it is present in the nu-

merator, but absent from the denominator. Hence

∏
n<p≤2n

p ≤
(

2n

n

)
≤ (1+1)2n = 4n

or, in terms of the function ϑ,

ϑ(2n)−ϑ(n) = log
∏

n<p≤2n
p ≤ n log4.

Let’s set an integer k, such that 2k−1 < x ≤ 2k . This leads to

ϑ(x) ≤ϑ
(
2k

)
= ∑

0≤ j≤k−1

(
ϑ

(
2 j+1

)
−ϑ

(
2 j

))
≤

≤ log4
∑

0≤ j≤k−1
2 j ≤ 2k log4 ≤ (

2log4
)

x. (2.8)

Therefore, in (2.7) we can take c2 = 2log4.
To prove the lower bound, we observe that for n ≥ 1 we have

2n ≤
(

2n

n

)
, (2.9)

a fact that can be verified by a simple induction. Moreover, from Theorem 3 we
deduce that

log

(
2n

n

)
= ∑

p≤2n

∑
j≥1

(⌊
2n

p j

⌋
−2

⌊
n

p j

⌋)
log p. (2.10)

Hence, (2.9) and (2.10) together give

n log2 ≤ ∑
p≤2n

∑
j≥1

(⌊
2n

p j

⌋
−2

⌊
n

p j

⌋)
log p.

At this point, we introduce an integer α≥ 1 and split the last sum to obtain

∑
p≤2n

∑
1≤ j≤α

(⌊
2n

p j

⌋
−2

⌊
n

p j

⌋)
log p ≥

≥ n log2− ∑
p≤2n

∑
j≥α+1

(⌊
2n

p j

⌋
−2

⌊
n

p j

⌋)
log p. (2.11)

The observation that (b2xc−2bxc) is either 0 or 1 permits us to write

∑
p≤2n

∑
1≤ j≤α

(⌊
2n

p j

⌋
−2

⌊
n

p j

⌋)
log p ≤α ∑

p≤2n
log p =α ·ϑ (2n)
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and (2.11) becomes

α ·ϑ (2n) ≥ n log2− ∑
p≤2n

∑
j≥α+1

(⌊
2n

p j

⌋
−2

⌊
n

p j

⌋)
log p. (2.12)

Let’s bound the sum on the right-hand side of the equation above. We have

∑
p≤2n

∑
j≥α+1

(⌊
2n

p j

⌋
−2

⌊
n

p j

⌋)
log p ≤

≤ 2n
∑

p≤2n

∑
j≥α+1

log p

p j
≤ 2n

∑
p≤2n

∑
j≥α+1

p

p j
=

= 2n
∑

p≤2n

1

pα−pα−1 ≤ 4n
∑

p≤2n

1

pα
.

Consequently

4n
∑

p≤2n

1

pα
≤ 4n

∑
k≥2

1

kα
≤ 4n

∫ ∞

1

1

tα
d t = 4n

α−1
.

Plugging this back into (2.12) gives

α ·ϑ (2n) ≥ n log2− 4n

α−1
= n

(
log2− 4

α−1

)
.

Finally, if we take α= 7, then

ϑ (2n) ≥ 2n

1000
. (2.13)

To finish the proof, take any positive real x ≥ 4. There exists an even integer 2m,
such that x ≥ 2m, but x −2m < 2. Using (2.13) we obtain

ϑ (x) ≥ϑ (2m) ≥ 2m

1000
> x −2

1000
.

However, since x ≥ 4 or x −2 ≥ x
2 , we get

ϑ (x) > x

2000
. (2.14)

Hence, if we take c1 = 1
2000 , the theorem is proven.

Before going further, let’s introduce a basic tool used to work with sums in-
volving prime numbers. We follow [2, page 77].

Theorem 6 (Abel’s summation formula). Let a(n) be a function from the set of
integers to the set of complex numbers. Let

A(x) = ∑
n≤x

a(n),
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where A(x) = 0 if x < 1. If f has continuous derivative on the interval [y, x], where
0 < y < x, then we have∑

y<n≤x
a(n) f (n) = A(x) f (x)− A(y) f (y)−

∫ x

y
A(t ) f ′(t )d t . (2.15)

Proof. The proof is easy if one uses Riemann-Stieltjes integration. We see that
A(x) is a step function with jumps a(n) at every integer value in the sum (2.15).
Thus we can write ∑

y<n≤x
a(n) f (n) =

∫ x

y
f (t )d A(t )

and integrate by parts to obtain∑
y<n≤x

a(n) f (n) = [
f (t )A(t )

]x
y −

∫ x

y
A(t )d f (t ) =

= f (x)A(x)− f (y)A(y)−
∫ x

y
A(t ) f ′(t )d t .

Using Abel’s summation formula it is easy to obtain

Theorem 7 (Euler’s summation formula). If f has continuous derivative on the
interval [y, x], for 0 < y < x, then∑

y<n≤x
f (n) =

∫ x

y
f (t )d t +

∫ x

y
{t } f ′(t )d t + {

y
}

f (y)− {x} f (x), (2.16)

where {x} stands for the fractional part of x, i.e., {x} = x −bxc.

Proof. Take a(n) = 1 (hence A(x) = bxc). Using the formula for the integration by
parts, i.e., ∫ x

y
f ′(t )d t = x f (x)− y f (y)−

∫ x

y
f (t )d t ,

and by a proper rearrangement of terms, the result is obtained.

We will use this formula to obtain a well known asymptotics for the harmonic
series. We have

Theorem 8 (Asymptotic formula for the harmonic series).

∑
1≤n≤x

1

n
= log x +γ+O

(
1

x

)
, (2.17)

where
γ≈ 0.5772156649015329

is a constant, known as Euler-Mascheroni constant, Euler’s constant or simply –
gamma constant.

10



Proof. We use Euler’s summation formula with f (t ) = 1
t and y = 1, to get

∑
1≤n≤x

1

n
=

∫ x

1

1

t
d t −

∫ x

1

{t }

t 2 d t +1 =

= log x +
(
1−

∫ ∞

1

{t }

t 2 d t

)
+

∫ ∞

x

{t }

t 2 d t =

= log x +
(
1−

∫ ∞

1

{t }

t 2 d t

)
+O

(∫ ∞

x

1

t 2 d t

)
=

= log x +
(
1−

∫ ∞

1

{t }

t 2 d t

)
+O

(
1

x

)
.

If we set

γ= 1−
∫ ∞

1

{t }

t 2 ,

the result follows.

Using the previous theorem, we can redefine γ as:

γ= lim
x→∞

(
log x − ∑

1≤n≤x

1

n

)
One of the greatest unsolved problems in mathematics asks if this constant is
rational or not. Empirical data suggests that the latter is true: if γ = a

b , then it is
known that b must have at least 242080 digits ([26, page 97]).

We will also need a weak version of Stirling’s approximation formula.

Theorem 9 (Stirling’s approximation formula).

log(n!) = n logn +O(n). (2.18)

Proof. Using Euler’s summation formula with f (x) = log x and y = 1, we will get

∑
1≤k≤n

logk = ∑
1<k≤n

logk =
∫ n

1
log t +

∫ n

1

{t }

t
d t =

= [
t (log t −1)

]n
1 +O

(∫ n

1

1

t
d t

)
=

= n logn −n +O(logn) = n logn +O(n).

We are ready to prove the following

Theorem 10 (Mertens’ First Theorem). For x ≥ 2 we have

∑
p≤x

log p

p
= log x +O(1). (2.19)

11



Proof. We write
n! = ∑

p≤n
pνp (n!)

or, equivalently
log(n!) = ∑

p≤n
νp (n!) log p.

Now, from Theorem 3, we get

log(n!) = ∑
p≤n

∑
k≥1

⌊
n

pk

⌋
log p =

= ∑
p≤n

⌊
n

p

⌋
log p +O

(
n

∑
p≤n

∑
k≥2

log p

pk

)
=

= ∑
p≤n

⌊
n

p

⌋
log p +O

(
n

∑
p≤n

log p

p2

)
,

since
∑

k≥2
log p

pk = log p
p2−p ≤ 2log p

p2 .

Moreover,
∑

k≥1
logk

k2 converges (e.g., by the Cauchy test of convergence) and
we get

log(n!) = ∑
p≤n

⌊
n

p

⌋
log p +O (n) =

∑
p≤n

n

p
log p +O

( ∑
p≤n

log p

)
+O (n) .

Application of Theorem 5 gives us

log(n!) = ∑
p≤n

n

p
log p +O (n) .

However, from Theorem 9 we already know that

log(n!) = n logn +O(n)

and we obtain ∑
p≤n

n

p
log p = n logn +O(n).

If we divide it by n, we will finally obtain

∑
p≤n

log p

p
= logn +O(1).

To finish the proof we have to consider any real x ≥ 2. But then

∑
p≤x

log p

p
= ∑

p≤bxc

log p

p
= logbxc+O(1) = log x +O(1),

since from the l’Hôpital’s rule the difference (logbxc− log x) converges to zero as
x approaches infinity.

12



After preparing all the necessary tools we are now ready to prove Theorem 2.

Proof of Theorem 2. We will use Abel’s summation formula with f (x) = 1
log x and

a(n) =
{ logn

n , if n is a prime,

0, otherwise.

Then

A(x) = ∑
p≤x

log p

p

and ∑
n≤x

a(n) f (n) = ∑
p≤x

1

p
.

So we have ∑
p≤x

1

p
= A(x)

log x
+

∫ x

2

A(t )

t (log t )2 d t .

But from Theorem 10 we know that A(x) = log x +O(1). We write A(x) = log x +
R(x). Therefore∑

p≤x

1

p
= log x +R(x)

log x
+

∫ x

2

log t +R(t )

t (log t )2 d t =

= 1+ R(x)

log x
+

∫ x

2

1

t log t
d t +

∫ x

2

R(t )

t (log t )2 d t =

= 1+ R(x)

log x
+ loglog x − loglog2+

∫ ∞

2

R(t )

t (log t )2 d t −
∫ ∞

x

R(t )

t (log t )2 d t =

= loglog x +B + R(x)

log x
−

∫ ∞

x

R(t )

t (log t )2 d t =

= loglog x +B +O

(
1

log x
−

∫ ∞

x

1

t (log t )2

)
= loglog x +B +O

(
1

log x

)
,

where

B = 1− loglog2+
∫ ∞

2

R(t )

t (log t )2 d t .

The constant B is called the Mertens constant (or Meissel–Mertens constant) and
has the value

0.2614972128476427837554268386086958590515666482612.

A formula for B with a very good numerical convergence is given by ([17])

B = γ+ ∑
k≥2

µ(k)

k
logζ(k),

where γ is the Euler-Mascheroni constant, µ is the Möbius function and ζ is the
Riemann Zeta function.

Mertens also proved the following, beautiful

13



Theorem 11 (Mertens’ Third Theorem).

∏
p≤x

(
1− 1

p

)
∼ e−γ

log x
,

where e is Napier’s constant and γ is the Euler-Mascheroni constant.

We will not prove this theorem here, because we will only need a much weaker
version. Instead, we will prove

Theorem 12 (Weak Mertens’ Third Theorem). There exist positive constants x0,
c1 and c2, such that for x > x0

c1

log x
≤ ∏

p≤x

(
1− 1

p

)
≤ c2

log x
. (2.20)

In particular ∏
p≤x

(
1− 1

p

)
=O

(
1

log x

)
.

Proof. On the one hand, we have

∏
p≤x

1

1− 1
p

= ∏
p≤x

(
1+ 1

p
+ 1

p2 + . . .

)
=

= ∑
1≤k≤x

1

k
+∑

n

′ 1

n
≥ ∑

1≤k≤x

1

k
= log x +O(1), (2.21)

where the sum
∑′

is over positive integers divisible only by the primes not bigger
than x. Hence, if we divide (2.21) by log x, we will get

1

log x

∏
p≤x

1

1− 1
p

≥ 1+O

(
1

log x

)
≥ 1

2

for x large enough. Thus (2.20) is bounded from above, if we take c2 = 2.
On the other hand we have∏

p≤x

1

1− 1
p

= ∏
p≤x

(
1+ 1

p −1

)
≤ ∏

p≤x
e

1
p−1 = e

∑
p≤x

1
p−1 . (2.22)

But since ∑
p≤x

1

p −1
− ∑

p≤x

1

p
= ∑

p≤x

1

p(p −1)
=O(1),

we get from Theorem 2 that

∑
p≤x

1

p −1
= loglog x +O(1).
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Plugging this into (2.22) gives

∏
p≤x

1

1− 1
p

≤ e loglog x+O(1) =O(log x)

and so
1

log x

∏
p≤x

1

1− 1
p

≤O(1).

proving that (2.20) is bounded from below (for x large enough). This concludes
the proof.

2.3 Prime Number Theorem

Finally, we have the celebrated Prime Number Theorem, first proved in 1896 by J.
Hadamard and C. J. de la Vallée-Poussin, independently. The “elementary” proof
is attributed to both A. Selberg and P. Erdős, who proved it by similar methods in
1949.

Theorem 13 (Prime Number Theorem). If we let

π(x) = ∑
p≤x

1,

then we have
π(x) ∼ x

log x
.

We will not prove this essential fact. The reader may be interested in the in-
genious and intricate proof given by Donald J. Newman in [31].

2.4 Summary

In this chapter, we formulated and proved few important theorems on the prime
numbers. They will be needed later to prove important facts about twin primes
and prime sieving algorithms. In particular we learned that the series

∑
p

1

p

is divergent, just as the harmonic series over natural numbers. This will contrast
with the fact that the similar series for the twin primes is convergent.
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Chapter 3
Twin primes

3.1 Twin Prime Conjecture

Introduction

In 1912, E. Landau presented four problems in the number theory that he con-
sidered to be very difficult:

1. Goldbach’s Conjecture: Every positive even integer is a sum of two primes.

2. Twin Prime Conjecture: 2 can be written as a difference of two primes in
infinitely many ways.

3. Legendre’s Conjecture: There is always a prime between n2 and (n +1)2.

4. There are infinitely many primes of the form n2 +1.

All these problems remain open, proving that Landau was right. The first
three of them are related, they concern primes in some intervals. We will con-
centrate on the second problem, i.e.,

Conjecture 1 (Twin Prime Conjecture). There are infinitely many twin primes,
i.e., numbers p and p +2, such that both of them are primes.

The first pairs of twin primes are:

(3,5), (5,7), (11,13), (17,19), . . .

with 5 being the only prime being in two pairs. Let’s denote by π2 (x) a number
of primes p, not bigger than x, such that p+2 is also a prime. We therefore have:

π2 (10) = 2,

π2 (11) = 3,

π2 (17) = 4,

. . . . . . . . .
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x π2 (x) 2C2x/log2 x Li2(x)

101 2 2 5
102 8 6 14
103 35 28 46
104 205 156 214
105 1224 996 1249
106 8169 6917 8248
107 58980 50822 58754
108 440312 389107 440368
109 3424506 3074426 3425308
1010 27412679 24902848 27411417
1011 224376048 205808662 224368865
1012 1870585220 1729364450 1870559867
1013 15834664872 14735413064 15834598305

Table 3.1: The values of π2(x) compared.

The Table 3.1 contains values of π2 for some powers of 10.
Whereas there is no proof that there are infinitely many twin primes, the em-

pirical data on the function π2 strongly suggest that this is indeed true. Hardy
and Littlewood (1924) conjectured

Conjecture 2 (Strong Twin Prime Conjecture). Let

Li2(x) = 2C2

∫ x

2

d t

log2 t
,

where

C2 =
∏
p≥3

(
1− 1

(p −1)2

)
≈ 1.320323632

is the so called twin prime constant. Then we have

lim
x→∞

π2 (x)

Li2(x)
= 1. (3.1)

This fact would imply the infinitude of twin primes and also a simple asymp-
totic formula for π2 (x), namely

π2 (x) ∼ 2C2
x

log2 x
,

which shows particular resemblance to the Prime Number Theorem (Theorem
13). Table 3.1 and Figure 3.1 show that this approximation is much worse than
the representation by an integral. This resonates with the known fact that

Li(x) =
∫ x

2

d t

log t

17
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Figure 3.1: Plot of π2(x), 2C2x/log2 x and Li2(x) (cf. Table 3.1).

is a much better approximation to π(x) than

x

log x
,

although both are asymptotically equal to π(x).
Where does C2 come from? In [23] an intuitive, heuristic derivation is pro-

posed and we present it below.
From the Prime Number Theorem (Theorem 13) we know that the probabil-

ity of x ≥ 3 being prime is roughly 1/log x. The probability that x and x +2 are
primes at the same time is therefore 1/log2 x, assuming that both events are in-
dependent. But they are not completely independent – if x is a prime, then x+2 is
necessarily odd, for example. This doubles the probability of x+2 being a prime.

On the other hand, for any odd prime p, x will be not divisible by p with
probability 1, i.e., it will belong to one of p−1 residue classes

(
mod p

)
with prob-

ability p
p−1 . As x and x +2 cannot be in the same residue class, this changes the

probability of x+2 being a prime from p−1
p to p−2

p−1 . Combining these two facts we
obtain the probability of x and x +2 being a twin prime pair:

π2 (x)

x
≈ 1

log2 x
·2

∏
p≥3

(
p −2

p −1

)/(
p −1

p

)
= 1

log2 x
·2

∏
p≥3

(
1− 1

(p −1)2

)
= 2C2

log2 x
.

Even though we don’t know whether Twin Prime Conjecture is true, we know
some partial results.

In 1920, Viggo Brun showed that there exists a number x0 (effectively com-
putable), such that if x > x0, then

π2 (x) < 100x

log2 x
.
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This has been improved in 1966 by Bombieri and Davenport, who proved that

π2 (x) ≤ 8C2
x

log2 x

(
1+O

(
loglog x

log x

))
.

The factor 8 above has been improved subsequently to 6.8325, but the Strong
Twin Prime Conjecture requires it to be exactly 2.

Probably the greatest near-miss in proving the Twin Prime Conjecture is the
theorem of Chen (Theorem 31).

There are interesting records related to twin primes. At the time of writing,
the largest known twin prime pair is ([6])

65516468355 ·2333333 ±1.

Every number from this pair has 100355 decimal digits.
It is also known that ([14])

π2
(
2608 ·1015)= 2012314811498844.

Related problems

Goldbach’s Conjecture

Another famous unsolved problem in number theory is the Goldbach’s conjec-
ture. One of its possible statements is

Conjecture 3 (The Extended Goldbach’s Conjecture). Let R(n) be the number of
representations of an even positive integer n as a sum of two primes. Then

R(n) ∼ 2C2
∏
p|n
p>2

(
p −1

p −2

)∫ n

2

d t

log2 t
∼ 2C2

∏
p|n
p>2

(
p −1

p −2

)
n

log2 n
.

See Figure 3.2 for a plot of R(n).
The surprising presence of twin prime constant C2 in the conjectured for-

mula for R(n) suggests connection to the Twin Prime Conjecture. In fact, as dis-
cussed in Section 5.1 below, the methods used to attack one of these problems,
usually yield results for the second as well.

de Polignac’s Conjecture

The conjecture stated in 1849 by de Polignac is

Conjecture 4 (de Polignac’s Conjecture). Let n be a positive even integer. Then n
can be represented as a difference of two consecutive prime numbers in infinitely
many ways. Stated differently: the number of prime gaps of size n, i.e., pairs of
consecutive prime numbers pk and pk+1 with pk+1 −pk = n, is infinite.

Figure 3.3 presents plots of the number of prime gaps below some number x,
for different values of n.

The special case with n = 2 is the Twin Prime Conjecture.
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Figure 3.2: Number of representations of an even n as sum of two primes (“Gold-
bach’s Comet”). There is an evident “clustering” of integers that share the same
prime factors, here presented with primes 3 and 5.
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Figure 3.3: Number of prime gaps of size 2, 6, 10 and 14, such that the first prime
is not greater than x (cf. Figure 3.4).
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k-tuple conjecture

A very similar conjecture to de Polignac’s Conjecture was proposed by Hardy and
Littlewood. Consider any set of numbers (a1, a2, . . . , ak ), called a constellation. We
say that this constellation is admissible if it does not contain a complete set of
residues modulo any prime number p. For example, (0,2) or (0,2,6,8,12) are ad-
missible, whereas (0,2,4) is not. Note also, that we have only to check primes
p ≤ k.

A prime k-tuple for any admissible constellation consists of k numbers (b1 +
a1,b1 +a2, . . . ,bk +ak ), such that for every i ∈ {1,2, . . . ,k}, ai +bi is a prime. Now
the reason for admissibility is obvious – otherwise it would be possible for a tuple
to contain at least one number divisible by some prime p.

We may now formulate

Conjecture 5 (k-tuple conjecture). There exist infinitely many prime k-tuples for
any admissible constellation.

It’s clear now that one can assume that a1 = 0.
The Twin Prime Conjecture is equivalent to the case of the constellation (0,2).

Furthermore, the prime pairs of the form (p, p +4) are called cousin primes and
primes of the form (p, p +6) – sexy primes.

Hardy and Littlewood also conjectured asymptotic density for the number of
primes p not greater than x, such that p +n (for a fixed even n) is also a prime:

πn (x) ∼ 2Cn

∫ n

2

d t

log2 t
∼ 2Cn

x

log2 x
,

where

Cn =C2
∏
p|n
p>2

p −1

p −2

and C2 is the twin prime constant. The formula suggests that the number of
cousin primes is asymptotically the same as the number of twin primes (C4 =C2).
This seems to be true and therefore π4(x) is not shown in Figure 3.4. On the other
hand, C6 = 2C2, so the pairs of sexy primes should happen roughly two times
more often than of size 2 or 4. This also seems to be true, as can be seen in Fig-
ure 3.4.

Small prime gaps

Let’s define
∆= liminf

n→∞
pn+1 −pn

log pn
.
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Figure 3.4: Values of π2(x), π6(x), π10(x) and π14(x) (cf. Figure 3.3).

Then the necessary condition for the Twin Prime Conjecture to be true is ∆=
0. Indeed, if there are infinitely many twin prime pairs, say (qn , qn +2), then

∆= liminf
n→∞

pn+1 −pn

log pn

≤ liminf
n→∞

qn+1 −qn

log qn
= liminf

n→∞
2

log qn
= lim

n→∞
2

log qn
= 0.

The value of ∆ was subject to many improvements over the time. However, in
[21] it has been established that in fact ∆ = 0, strongly suggesting that the Twin
Prime Conjecture is true.

As a side note, note that also

limsup
n→∞

pn+1 −pn

log pn
=∞,

that is, large prime gaps also exist.
It is also conjectured (Cramér’s Conjecture) that

pn+1 −pn =O
(
(log pn)2) .

and the numerical evidence suggests it may be true. This would also imply Leg-
endre’s Conjecture: for sufficiently large n there would always be a prime be-
tween n2 and (n +1)2.

Dickson’s Conjecture

In [12], a generalization of Dirichlet’s problem on the infinitude of primes in
arithmetic progressions was presented. The problem is known as
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Conjecture 6 (Dickson’s Conjecture). Let:

a1n +b1, a2n +b2, . . . , ak n +bk

be a family of arithmetic progressions with ai > 1. Unless there is a prime p that
divides all above values for all n, there exists infinitely many values of n, such that
all above numbers are prime.

When we take k = 1, then we obtain Dirichlet’s Theorem. When the progressions
are n and n + 2, then we once again get Twin Prime Conjecture. Taking n and
2n +1 gives conjecture about infinitude of Sophie-Germain primes. Similarly, de
Polignac’s Conjecture follows from Dickson’s conjecture as well. Finally, the ques-
tion about arbitrary long arithmetic progressions of primes is also a special case
of this conjecture. As can be seen, some special cases have already been proven.
The latter case is answered by the famous theorem of Green and Tao ([25]):

Theorem 14 (Green-Tao Theorem). Primes contain arbitrarily long arithmetic
progressions.

3.2 Characterization of twin primes

Characterization by congruence relations

Let’s start with a basic theorem that will be used throughout this section.

Theorem 15 (Wilson’s Theorem). Let n > 1 be an integer. Then n is a prime if
and only if

(n −1)!+1 ≡ 0 (mod n) . (3.2)

More precisely,

(n −1)!+1 ≡
{

0 (mod n) , if n is a prime,
1 (mod n) , otherwise.

(3.3)

Proof. Assume that n is a prime. Every number from the set {1,2, . . . ,n −1} is co-
prime to n and therefore has a multiplicative inverse modulo n. We know that
the only solutions to the equation

x2 ≡ 1 (mod n)

are 1 and −1. These numbers are their own inverses and all other numbers can
be grouped into pairs of mutual inverses, say (ri , qi ) for 1 ≤ i ≤ n−3

2 . As ri qi ≡
1 (mod n), we now have

(n −1)! ≡ 1 ·2 · . . . · (n −1) ≡ 1 · (−1) · (r1q1) · (r2q2) · . . . · (r n−3
2

q n−3
2

) ≡
≡−1 (mod n) .
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This shows the first part of the theorem.
Assume now that n is a composite number. Hence there are two numbers 1 <

a,b < n, such that n = ab. If a 6= b then these numbers are two distinct numbers
in the factorial (n −1)!. Consequently n = ab | (n −1)! and we are done.

Otherwise, a = b and n = a2. If a = 2 (and n = 4) the theorem can be verified
by a direct calculation. Thus we may assume that a > 2. In that case 2a < a2 = n
and we see that a and 2a are two distinct numbers in the product (n−1)!. Finally
we get n = a2 | (2a)a | (n −1)! and Wilson’s theorem is proven.

We will use this theorem to prove Clement’s Theorem ([8]) which character-
izes a pair of twin primes in the spirit of Wilson’s Theorem.

Theorem 16 (Clement’s Theorem on twin primes). Let n > 1 be an integer. Inte-
gers n and n +2 are both primes if and only if

4[(n −1)!+1]+n ≡ 0 (mod n(n +2)) . (3.4)

Proof. The theorem can be verified by a direct computation for n ≤ 4, so we as-
sume that n > 4.

From now on, assume that n and n+2 are primes. From Wilson’s theorem we
have (n −1)!+1 ≡ 0 (mod n). Hence

4[(n −1)!+1]+n ≡ 4 ·0+n ≡ 0 (mod n) .

Since n +2 is a prime too, we get (n +1)!+1 ≡ 0 (mod (n +2)) and

4[(n −1)!+1]+n ≡ 2[2(n −1)!+2]+n ≡ 2[(−1)(−2)(n −1)!+2]+n ≡
≡ 2[(n +1)!+1+1]+n ≡ 2 ·1+n ≡ 0 (mod (n +2)) .

By Chinese Remainder Theorem we obtain (3.4).
Assume therefore that (3.4) is true. We have to show that n and n + 2 are

primes. If n is not a prime, then (n −1)! ≡ 0 (mod n) and

0 ≡ 4[(n −1)!+1]+n ≡ 4+n ≡ 4 (mod n) .

Hence n | 4. This implies that n ≤ 4 - a contradiction, showing that n must be a
prime.

This time assume that n+2 is not a prime. Then (n+1)! ≡ 0 (mod (n +2)) and,
just as before,

0 ≡ 4[(n −1)!+1]+n ≡ 2[(n +1)!+2]+n ≡ 4+n ≡ 2 (mod (n +2)) .

Thus (n +2) | 2. In particular n ≤ 0 which is absurd. This finishes the proof.

In [30] a further generalization of Clement’s theorem is given. It character-
izes pairs of primes whose difference is an arbitrary positive even number (cf.
Conjecture 5). In this thesis we present a slightly refined version of this theorem,
requiring weaker assumptions and having a simpler proof.
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Theorem 17 (Generalization of Clement’s Theorem). Let n,k > 1 be integers. In-
tegers n and n +2k are a pair of primes if and only if n has no proper prime divi-
sors smaller than 2k and

2k(2k)! [(n −1)!+1]+ [(2k)!−1]n ≡ 0 (mod n(n +2k)) . (3.5)

Remark. It can be easily checked that Clement’s theorem is a special case of this
theorem when k = 1.

Unfortunately, the assumption about proper prime factors of n cannot be
omitted. One can see that by taking n = 9 and k = 4. These numbers satisfy the
congruence (3.5), but 9 is not a prime.

Proof. Before we begin, we need a simple identity:

(n +2k −1)! ≡ (n −1)! ·n · (n +1) · . . . · (n +2k −1) ≡
≡ (n −1)! · (−2k) · (−2k +1) · . . . · (−1) ≡
≡ (n −1)!(2k)! (mod (n +2k)) .

Assume that n and n +2k are primes. It follows easily that n, being a prime, has
no proper prime divisors and, in particular, no prime factors smaller than 2k.
From Wilson’s theorem (n −1)!+1 ≡ 0 (mod n) and

2k(2k)! [(n −1)!+1]+ [(2k)!−1]n ≡ 0 (mod n) .

Also n+2 is a prime so (2k)!(n−1)! ≡ (n+2k−1)! ≡−1 (mod (n +2)). This leads to

2k(2k)! [(n −1)!+1]+ [(2k)!−1]n ≡ 2k(2k)!(n −1)!+2k(2k)!+n(2k)!−n ≡
≡−2k −2k(2k)!+n(2k)!−n ≡
≡ [(2k)!−1](n +2k) ≡ 0 (mod (n +2k)) .

Application of Chinese Remainder Theorem shows that (3.5) holds.
Next, let’s prove that n and n +2k are primes when (3.5) is true and n has no

proper prime factors smaller than 2k. Assume that 2n+k is not a prime. Another
application of Wilson’s theorem gives (2k)!(n−1)! ≡ (n+2k−1)! ≡ 0 (mod (n +2k)).
We easily see that

0 ≡ 2k(2k)! [(n −1)!+1]+ [(2k)!−1]n ≡
≡ 2k(2k)!(n −1)!+2k(2k)!+n(2k)!−n ≡
≡ (2k)!(n +2k)−n ≡ 2k (mod (n +2k)) .

In particular n+2k ≤ 2k or n ≤ 0. This contradiction shows that n+2k is a prime.
It remains to show that n is a prime. Assume it is not. We already know that

n+2k is a prime, so 2k and n+2k are coprime. From this we deduce that 2k and
n are also coprime:

(n,2k) = (n +2k,2k) = 1.

25



Since n is not a prime or (n −1)! ≡ 0 (mod n), we obtain from (3.5)

0 ≡ 2k(2k)! [(n −1)!+1]+ [(2k)!−1]n ≡
≡ 2k(2k)! (mod n) .

But (n,2k) = 1 and we can divide by (2k)2 to get

(2k −1)! ≡ 0 (mod n) .

Let p be a proper prime factor dividing n. From our assumptions we know that
p ≥ 2k. But from the above relation p | n | (2k − 1)!, so p divides at least one
number smaller than 2k. This means that p < 2k - a contradiction that shows
that n must be a prime. The proof is concluded.

Characterization by multiplicative functions

Another way to characterize twin prime pairs is the theorem given in [29]. Be-
forehand, however, we need to define functions σ and ϕ.

Definition (Divisor function σ). For a positive integer n, we define

σ(n) = ∑
d |n

d ,

a sum of all positive divisors of n.

Definition (Euler’s totient function ϕ). For a positive integer n, we define

σ(n) = ∑
1≤a≤n
(a,n)=1

1,

a number of positive integers not bigger than n and coprime to n.

It is easy to check that these functions are multiplicative, i.e., whenever a and b
are coprime,

σ(ab) =σ(a)σ(b) and ϕ(ab) =ϕ(a)ϕ(b).

Using this property, if we write an integer n as

n = pa1
1 ·pa2

2 · . . . ·pak

k ,

where pi are distinct primes and ai are non-negative integers for i ∈ {1,2, . . . ,k},
then

σ(n) = ∏
1≤i≤k

pai+1 −1

p −1
(3.6)

and
ϕ(n) = ∏

1≤i≤k
pai−1 (

p −1
)

. (3.7)

Now we can state the following
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Theorem 18 (Characterization of twin primes by multiplicative functions).
A number n is a product of two primes that differ by 2 (i.e., twin primes) if and
only if

ϕ(n)σ(n) = (n −1)2 −4. (3.8)

Proof. Let’s proof the necessity of the condition. Assume therefore that n = p(p+
2) and both p and p +2 are primes. Then, by multiplicative properties of ϕ and
σ

ϕ(n)σ(n) = (p −1)(p +1) · (p +1)(p +3) = (p(p +2)−1)2 −4.

Assume now that (3.8) holds. We may write n as

n = pa1
1 ·pa2

2 · . . . ·pak

k ,

where (p1 > p2 > . . . > pk ). Then, by (3.6) and (3.7),

ϕ(n)σ(n) = ∏
1≤i≤k

pai−1
i

(
pai+1

i −1
)

and our assumption can be written as

2n +3 = n2 − ∏
1≤i≤k

pai−1
i

(
pai+1

i −1
)

. (3.9)

First, let’s notice that k cannot be 1. To see that, let’s assume that k = 1. Then we
have

2pa +3 = pa−1

pa−1 (
2p −1

)= 3.

This implies that p = 1, a contradiction and k ≥ 2.
Now it’s easy to see that n must be odd. Indeed, if n is even, then the left

hand side of (3.9) is odd. Also, since k ≥ 2 there is another, odd prime, say p j ,

dividing n. But then p
a j+1
j −1 is even and the right hand side of (3.9) is even. This

contradiction shows that p1 ≥ 3.
Now, we will prove that n must be squarefree. To see that, let’s assume that

p2 | n for some prime p. Reducing (3.9)
(
mod p

)
we immediately see that p | 3

and p must be 3. So we have 32 | n. But since k ≥ 2 there exists a prime p j , distinct
from p, such that p j | n and p2

j - n (we just have proven the last fact). Hence

p j ≡ ±1 (mod 3) or p
a j+1
j −1 ≡ 0 (mod 3), since a j = 1. Therefore the right hand

side of (3.9) is divisible by 9, but the left side is not. Thus n is squarefree and (3.9)
becomes

2n +3 = n2 − ∏
1≤i≤k

(
p2

i −1
)

. (3.10)
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Consequently, let’s rule out the case k ≥ 3. Since p1 ≥ 3, p2 ≥ 5, p3 ≥ 7, we have

n2 − ∏
1≤i≤k

(
p2

i −1
)= p2

1p2
2 . . . p2

k − (p2
1 −1)(p2

2 −1) . . . (p2
k −1) >

> p2
1p2

2 . . . p2
k − (p2

1 −1)p2
2 . . . p2

k = p2
2 . . . p2

k =
= p2p3 . . . pk

p1
·n > p3p4 . . . pk ·n ≥ 7n >

> 2n +3,

a contradiction which shows that n is a product of two distinct primes. Let’s write
n = pq and plug it into (3.10). This gives

2pq +3 = p2q2 − (p2 −1)(q2 −1)

p2 −2pq +q2 −4 = 0

(p −q)2 −22 = 0

(p −q +2)(p −q −2) = 0.

This means that either p = q −2 or p = q +2. In both cases (p, q) is a twin prime
pair. This finishes the proof of the theorem.

Actually, in [36] the authors show

Theorem 19 (Sergusov’s Theorem). A number n is a product of two primes that
differ by 2 if and only if

σ(n) = n +1+2
p

n +1 or ϕ(n) = n +1−2
p

n +1. (3.11)

Proof. Let n = p(p +2) for some prime p, such that p +2 is also prime. Then we
have

σ
(
p(p +2)

)= (p +1)(p +3) = p(p +2)+1+2(p +1) =
= p(p +2)+1+2

√
(p +1)2 = p(p +2)+1+2

√
p(p +2)+1 =

= n +1+2
p

n +1,

ϕ
(
p(p +2)

)= (p −1)(p +1) = p(p +2)+1−2(p +1) =
= n +1−2

p
n +1.

Now we will use two basic facts:

σ (n) ≥ n +1,

ϕ (n) ≤ n −1.

Here the equality holds if and only if n is a prime.
We may now put n = m2 −1, because otherwise the right hand sides in (3.11)

would not be integers. Then the equation becomes:

σ ((m −1)(m +1)) = m(m +2) or ϕ ((m −1)(m +1)) = m(m −2).
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Let’s assume that (m −1,m +1) = 1. Then

m(m +2) =σ ((m −1)(m +1)) ≥ m(m +2).

Therefore both m −1 and m +1 must be primes.
If m −1 and m +1 are not coprime, then (m −1,m +1) = (2,m +1) = 2 and m

is odd. We put m = 2k +1 to get

4k2 +8k +3 =σ (2k(2k +2)) =σ (4k(k +1)) .

Now if k is odd then

4k2 +8k +3 =σ (4(k +1))σ (k) ≥ (4k +5)(k +1) = 4k2 +9k +5,

a contradiction. Therefore k is even and

4k2 +8k +3 =σ (k +1)σ (4k) ≥ (k +2)(4k +1) = 4k2 +9k +2.

So k = 1, but this means that n = 3 ·5.
Again, let’s assume that (m −1,m +1) = 1. Thus we obtain

m(m −2) =ϕ ((m −1)(m +1)) ≤ m(m −2)

and once more both m −1 and m +1 must be primes.
If (m −1,m +1) = 2, we put m = 2k +1 to obtain

4k2 −1 =ϕ (4k(k +1)) .

If k is odd, then:

4k2 −1 =ϕ (4(k +1))ϕ (k) ≤ (4k +3)(k −1) = 4k2 −k −3,

with no solutions in positive k.
Finally, if k is even then

4k2 −1 =ϕ (k +1)ϕ (4k) ≤ k(4k −1) = 4k2 −k,

which implies that k = 1 and n = 3 ·5.

3.3 Summary

In this chapter, the current knowledge about the Twin Prime Conjecture was pre-
sented. Moreover, we showed few related problems in the number theory. The
positive answer to some of them would imply the Twin Prime Conjecture. We
also provided couple of ways to characterize twin primes with the proofs.
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Chapter 4
Prime sieving algorithms

The term sieve in mathematics is ambiguous – there are at least two different,
yet connected ideas bearing this name. Most people will think about a sieve of
Eratosthenes – the famous ancient method to produce a list of all primes up to a
specific number. We will present this algorithm and refined algorithms that can
be used for the same purpose.

However, this is only a tip of the iceberg. In 20th century a truly beautiful and
powerful sieve methods were introduced. It dates back to 18th century when Leg-
endre, using a sieve of Eratosthenes, developed an idea now confusingly known
as the sieve of Eratosthenes, too. We have to stress a distinction between the sieve
of Eratosthenes, the algorithm and the sieve of Eratosthenes, the combinatorial
tool.

4.1 Sieve of Eratosthenes

The most basic and historically the first method used to obtain a list of prime
numbers up to some limit is the sieve of Eratosthenes. Eratosthenes was the di-
rector of the library of Alexandria, famous not only because of his sieve, but also
for performing high precision measurement of the circumference of Earth. How-
ever, historically the first appearance of sieve of Eratosthenes is known to us from
the work of Nicomedes, his only complete work that survived to our times, enti-
tled Introduction to arithmetic.

Assume we want to make a list of prime numbers up to n. We start with a list
of numbers from 2 to n and follow these steps:

1. Take the smallest number i that is not yet crossed out. This is a prime.

2. If i 2 > n the algorithm finishes. Primes are the numbers that where not
crossed out.

3. Otherwise cross out the numbers 2i , 3i , 4i , etc. from the list.
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Iteration 0: 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
Iteration 1: 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
Iteration 2: 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
Iteration 3: 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Result: 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Figure 4.1: Consecutive steps in the sieve of Eratosthenes

4. Go to the Step 1.

The example of this process is presented in Figure 4.1. The pseudocode for this
algorithm is given in Algorithm 4.1.

The algorithm relies on a basic fact that if a number d is composite then it
has a prime factor not greater than bpdc. This precisely is the stopping condition
in Step 2.

We immediately see that the space needed to run this algorithm is O (n).
Let’s now compute the running time of this algorithm as the number of op-

erations required to finish the sieving. In our model every arithmetical operation
will take a bounded time what is not true in practice.

Require: A[i ] for 2 ≤ i ≤ n - an array of numbers to sieve for primes
Ensure: A[i ] = 1 iff i is a prime number

1: for i ← 2. . .n do
2: A[i ] ← 1
3: end for
4: for i ← 2. . .

⌊p
n

⌋
do

5: if A[i ] = 1 then
6: for j ∈ {2i ,3i ,4i , . . .}, j ≤ n do
7: A[ j ] ← 0
8: end for
9: end if

10: end for

Algorithm 4.1: Sieve of Eratosthenes.

The algorithm has π(
p

n) iterations. For every iteration we have to cross out

all multiples of prime p (without p itself). There are
⌊

n
p

⌋
−1 = O

(
n
p

)
of them at

each stage. Therefore the running time is of order

∑
p≤pn

O

(
n

p

)
=O

(
n

∑
p≤pn

1

p

)
=O

(
n loglog

p
n

)=O
(
n loglogn

)
,

by using the Mertens’ Theorem (Theorem 2). This is a little more than linear in
respect to the size of n and we can say that on average loglogn operations need
to be performed for every number to tell if it is a prime. This function diverges to
infinity, but very slowly.
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By using more sophisticated arguments one can reduce the complexity of the
sieve of Eratosthenes. In [11, Section 3.2.7] authors present a refinement of the
above algorithm which runs in sublinear time O

(
n/loglogn

)
. We, instead, will

describe in Section 4.5 how the factor loglogn can be easily removed leading to
a sieving algorithm with linear complexity.

There is also a less known variant of the sieve of Eratosthenes, called Euler’s
sieve where each composite number is removed exactly once (Figure 4.1 shows
that in the original algorithm numbers are often crossed out multiple times). The
algorithm starts with a list of numbers from 2 to n and goes as follows:

1. Take the smallest number i that is not yet crossed out. This is a prime.

2. If i 2 > n the algorithm finishes. Primes are the numbers that remain.

3. Otherwise build a new list by multiplying every element of original list by
i . Remove every element from this list from the original list.

4. Go to the Step 1.

As we can see, only the Step 3 is substantially different. We remove numbers in-
stead of crossing them out and they are not considered afterwards. Nevertheless,
the number of iterations will be the same as before. The algorithm is presented
as Algorithm 4.2.

Require: A = {2,3, . . . ,n} - a set of numbers to sieve for primes
Ensure: A contains only prime numbers

1: while ∃i ≤ ⌊p
n

⌋
, i ∈ A do

2: B ← {
i j : j ∈ A, j ≥ i , i j ≤ n

}
3: A ← A−B
4: end while

Algorithm 4.2: Sieve of Euler.

The correctness of the algorithm can be proven easily. First, observe that
primes will not be sieved during the process as only the composite numbers are
removed. Now, let’s take any composite number m from the list. Thus m = pd
where 1 < p,d < m and p is the smallest prime factor of m. It follows that m will
be sieved during the iteration where a = p because d (having no prime factors
smaller than p) was not removed during previous iterations.

Let’s compute the running time for that sieve. We assume that we can remove
a number from a list in a constant time. There will be n −π(n) removals in total,
because we are left with π(n) primes at the end. Therefore the running time is

n −π(n) = n −O

(
n

logn

)
=O (n) ,
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Iteration 0: 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
Iteration 1: 2 3 5 7 9 11 13 15 17 19 21 23 25 27 29
Iteration 2: 2 3 5 7 11 13 17 19 23 25 29
Iteration 3: 2 3 5 7 11 13 17 19 23 29

Result: 3 5 7 11 13 17 19 23 27 29

Figure 4.2: Consecutive steps in the sieve of Euler

by the Prime Number Theorem (Theorem 13). This is a small improvement over
the original algorithm. In practice the assumption about constant time removal
of elements is not feasible. The standard data structures implementing an or-
dered set of numbers (e.g., red-black trees) are of complexity O

(
logn

)
([10, chap-

ters 13, 14]).
As a result, implementations of Euler’s sieve tend to be slower than the sieve

of Eratosthenes.

4.2 Sieve of Sundaram

In [33] authors present an interesting prime sieve called Sundaram’s sieve. It was
discovered by an Indian student S. P. Sundaram in 1934.

The algorithm, as usual, starts with a list of numbers from 1 to n. This time,
however, we will sieve numbers up to 2n+2 as this sieve explicitly does not con-
sider even numbers. Now, we cross out all numbers of the form i + j + 2i j ≤ n
where 1 ≤ i ≤ j ≤ n−1

3 . The primes are obtained by taking all the numbers that
were not crossed out, multiplying them by 2 and incrementing by 1. Notice that
2 will not be on the list. The pseudocode for this algorithm is presented as Algo-
rithm 4.3.

Require: A[ j ] for 1 ≤ j ≤ n - an array of numbers to sieve for primes
Ensure: A[ j ] = 1 iff 2 j +1 is a prime number

1: for j ← 1. . .n do
2: A[ j ] ← 1
3: end for
4: for j ← 1. . .

⌊n−1
3

⌋
do

5: for i ← 1. . .
⌊

n− j
1+2 j

⌋
do

6: A[i + j +2i j ] ← 0
7: end for
8: end for

Algorithm 4.3: Sieve of Sundaram.

The algorithm works because of the following identity:

2(i + j +2i j )+1 = (2i +1)(2 j +1). (4.1)
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Therefore an odd number will be crossed out if and only if it is a product of two
odd numbers greater than 1, i.e., it is composite.

The memory requirement is of order O (n) and the running complexity of this
method is ∑

1≤ j≤(n−1)/3

⌊
n − j

1+2 j

⌋
= ∑

1≤ j≤(n−1)/3

n − j

1+2 j
+O (n) =

= n
∑

1≤ j≤(n−1)/3

1

1+2 j
− ∑

1≤ j≤(n−1)/3
O(1)+O (n) =

= nO
(
logn

)+O(n) =O
(
n logn

)
,

since 1
2 j < 1

2 j+1 < 1
2 j+2 and by asymptotic behavior of harmonic series. This is

slightly worse than the sieve of Eratosthenes, but nevertheless the algorithm is
notable for its simplicity.

4.3 Sieve of Pritchard

In [34] the author shows a simple refinement of the sieve of Eratosthenes. The
basic observation is that the order of two nested loops in Algorithm 4.1 can be
reversed. If d is a composite number we can write d = p f , where p is the smallest
prime dividing d (of course p ≤ p

d and f > 1). In the sieve of Eratosthenes we
basically iterate over p and then over f . If we are to reverse this order, we have
to have a list of primes beforehand. How can we do that if we actually sieve to
obtain this list?

In fact we only need the primes up to
p

n. Then for every possible value of
f we take every prime p and we cross out numbers of the form p f . We observe
that f must be bigger than 1 and not bigger than n

2 (because f = n
p ≤ n

2 ). The last,
but crucial observation is that if p is the smallest prime diving d = p f , then the
smallest prime dividing f must be at least as big as p. Therefore p ranges from 2
to the smallest prime that divides the given f .

We therefore get a method presented as Algorithm 4.4. The list of primes up
to

p
n can be obtained using the classical sieve of Eratosthenes.

It’s easy to prove that the algorithm is valid. We directly see that no prime
numbers are crossed out. Hence we must convince ourselves only that every
composite number is crossed out. But, as we analyzed above, every composite
number d is of the form d = p f , where p is the smallest prime dividing d , so it
will be crossed out.

In fact every composite number will be sieved out exactly once. To see that
assume that a number d = p1 f1 is sieved also as d = p2 f2, where p1, p2 are dis-
tinct primes and p1 is the smallest prime number diving d . We therefore have
p1 < p2 and it follows that p1 | f2 since p1 and p2 are coprime. But this is im-
possible: when f = f2 in the algorithm, the inner loop will finish as soon as
p = p1 < p2. This shows that every composite number will be crossed out exactly
once.
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Require: A[i ] for 2 ≤ i ≤ n - an array of numbers to sieve for primes
Ensure: A[i ] = 1 iff i is a prime number

1: P ← a set of primes from the set
{
1,2, . . . ,

⌊p
n

⌋}
2: for i ← 2. . .n do
3: A[i ] ← 1
4: end for
5: for f ← 2. . .

⌊n
2

⌋
do

6: for p ∈ P (in ascending order) do
7: d ← p f
8: if d > n then
9: break

10: end if
11: A[d ] ← 0
12: if f mod p = 0 then
13: break
14: end if
15: end for
16: end for

Algorithm 4.4: Sieve of Pritchard.

The memory complexity of this algorithm is again O (n). The running time
consists of the first sieving and the main loop, that is,

O
(p

n loglog
p

n
)+O (n −π(n)) =O (n) .

It means that the elementary observations made above gave rise to a sieving al-
gorithm that is linear. Additional work can improve the time to O

(
n/loglogn

)
.

We discuss it in Section 4.5.

4.4 Sieve of Atkin

In [3], the authors propose a completely different approach. They use quadratic
forms and the following three theorems to separate primes from composite num-
bers:

Theorem 20 (On the quadratic form x2 +4y2). Let n be a squarefree positive in-
teger, such that n ≡ 1 (mod 4). Then n is a prime if and only if the set{

(x, y) : x, y > 0, x2 +4y2 = n
}

has an odd number of elements,

35



Theorem 21 (On the quadratic form x2 +3y2). Let n be a squarefree positive in-
teger, such that n ≡ 1 (mod 6). Then n is a prime if and only if the set{

(x, y) : x, y > 0, x2 +3y2 = n
}

has an odd number of elements,

Theorem 22 (On the quadratic form 3y2 −x2). Let n be a squarefree positive in-
teger, such that n ≡ 11 (mod 12). Then n is a prime if and only if the set{

(x, y) : y > x > 0, 3y2 −x2 = n
}

has an odd number of elements.

The authors prove these facts using properties of Euclidean domains obtained
by extending Z by roots of unity. We will show Theorem 20 using an ingenious,
“one-sentence” proof of Fermat’s theorem on sum of squares given in [42] (see
[1] for a “proof-from-The-Book” version). But before, we will need an obvious,
but powerful lemma:

Lemma 1. Let S be a finite set and involutions f , g on this set, i.e., functions from
S to S, such that for every x ∈ S

f ( f (x)) = x and g (g (x)) = x.

Moreover, let f1 and g1 be numbers of fixed points of f and g , respectively. Then
f1 and g1 have the same parity, that is,

f1 ≡ g1 (mod 2).

Remark. The finite cardinality of S (assuming that f and g have a finite number
of fixed points) is important as the following counterexample shows:

f :N+ 7→N+, f (x) =
{

n −1, if n is even,

n +1, if n is odd.

g :N+ 7→N+, g (x) =


1, if n = 1,

n +1, if n > 1 and n is even,

n −1, if n > 1 and n is odd.

Both f and g are involutions, but f has no fixed points and g has precisely one.

Proof of Lemma 1. First note that f and g are bijections from S to itself (they are
their own inverses). Assume that x ∈ S is not fixed by f . For such an element x
we have: f (x) = y 6= x. But f is an involution, so this implies also that f (y) =
f ( f (x)) = x 6= y . Hence also y is not a fixed point. Consequently, the number of
points that are not fixed by f is even. Therefore we have

|S| ≡ f1 (mod 2).

The same is true for g1 and the lemma follows.
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Proof of Theorem 20. Let p be a number, such that p ≡ 1 (mod 4). Consider the
set

S = {
(x, y, z) ∈N3 : x2 +4y z = p

}
.

It is of finite cardinality and has an obvious involution given by the transforma-
tion (x, y, z) 7→ (x, z, y). Fixed points of this involution are precisely the repre-
sentations of p as a sum of the considered quadratic form. Indeed, if (x, y, z) =
(x, z, y), then y = z and x2 +4y2 = p. Now we have another involution:

(x, y, z) 7→


(x +2z, z, y −x − z), if x < y − z,

(2y −x, y, x − y + z), if y − z < x < 2y,

(x −2y, x − y + z, y), if x > 2y.

One can easily check that this function maps solutions of x2+4y z = p to different
solutions. Also the boundaries above are not attained. Indeed, if x = y − z, then
p would be a square - a contradiction. If x = 2y , then p would be even - again a
contradiction.

Moreover, triples from the first case map onto the set from the third case and
vice versa, and the triples from the second case map onto itself. Therefore the
only fixed points of this involution satisfy the relation:

(2y −x, y, x − y + z) = (x, y, z).

Hence x = y and we have

x2 +4xz = p

x(x +4z) = p. (4.2)

If p is a prime then the representation above is unique and necessarily x = y = 1,
z = p−1

4 and there is exactly one fixed point. It follows that the first involution
has an odd number of fixed points, i.e., there is an odd number of representa-
tions of p as a quadratic form x2 + 4y2, just as required by the assumptions of
Theorem 20.

If, on the other hand, p is a composite number then there are d(p)
2 solutions

to (4.2). But since p is a squarefree number divisible by more than one prime,

d(n) must be a power of 2 greater than 2. Then d(p)
2 is an even number too. This

implies that in this case the number of fixed points is even and the theorem is
proven.

In [15] it has been shown that this method of proof can be generalized. In partic-
ular, Zagier’s proof is a simple application of the presented technique. Moreover,
in the article, the following theorem is also proven (actually only the necessity is
proved, but the sufficiency follows as easily):
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Theorem 23 (On the quadratic form 4x2 +3y2). Let n be a squarefree positive
integer, such that n ≡ 7 (mod 12). Then n is a prime if and only if the set{

(x, y) : x, y > 0, 4x2 +3y2 = n
}

has an odd number of elements.

Theorem 23 is a weaker version of Theorem 21, but it will suffice. We give
only an outline of a proof – the details are left to the reader as an exercise as they
are very easy to check manually.

Proof of Theorem 23. Consider the set S = {
(x, y, z) ∈N3 : 3x2 +4y z = p

}
. We have

a trivial involution (x, y, z) 7→ (x, z, y) whose fixed points map to representations
of p as a quadratic form 3x2+4y2. We also have the following, less trivial involu-
tion:

(x, y, z) 7→



(x −2y,3x −3y + z, y), if y ∈ (0, x
2 ),

(−x +2y, y,3x −3y + z), if y ∈ ( x
2 , x + z

3 ),

(5x −4y +2z,6x −4y +3z,−3x +3y − z), if y ∈ (x + z
3 , 5

4 x + z
2 ),

(−5x +4y −2z,−3x +3y − z,6x −4y +3z), if y ∈ ( 5
4 x + z

2 , 3
2 x + 3

4 z),

(7x −4y +4z,6x −3y +4z,−6x +4y +3z), if y ∈ ( 3
2 x + 3

4 z, 7
4 x + z),

(−7x +4y −4z,−6x +4y −3z,6x −3y +4z), if y ∈ ( 7
4 x + z,2x + 4

3 z),

(5x −2y +4z,3x − y +3z,−6x +3y −4z), if y ∈ (2x + 4
3 z, 5

2 x +2z),

(−5x +2y −4z,−6x +3y −4z,3x − y +3z), if y ∈ ( 5
2 x +2z,3x +3z),

(x +2z, z,−3x + y −3z), if y ∈ (3x +3z,∞).

Note that this involution can be obtained in an almost algorithmic manner, as
has been showed in [15].

Just as before, one can check, with easy but tedious calculations, that the
boundaries are not attained and that it is actually an involution on the set S.
Only 5 cases (precisely, the cases 2nd, 4th, 5th, 6th and 8th) above are actually
involutions on their own, so we need to check only those for fixed points.

If (−x +2y, y,3x −3y + z) = (x, y, z) then x = y and

3x2 +4xz = p

x(3x +4z) = p. (4.3)

If p = ab (a < b) is any factorization of p to distinct (n is squarefree) numbers
then it must be that a = x and b = 3x +4z. It follows that x = a and z = b−3a

4 (z is
an integer if you consider it (mod 4)). Therefore we must have b > 3a.

If (−5x +4y −2z,−3x +3y − z,6x −4y +3z) = (x, y, z) then 3x −2y + z = 0 and
p = 3x2 +4y(2y −3x) = 3x2 +8y2 −12x y . If we reduce (mod 3) one gets that p ≡
2 (mod 3) – a contradiction.

If (7x −4y +4z,6x −3y +4z,−6x +4y +3z) = (x, y, z) then 3x = 2(y − z), so x is
even. This would imply that p is even too – a contradiction.
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If (−7x +4y −4z,−6x +4y −3z,6x −3y +4z) = (x, y, z) then 2x − y + z = 0 and
p = 3x2+4z(2x+z) = (3x+2z)(x+2z). If, as before, p = ab for any a < b, we must
have x +2z = a and b = 3x +2z. It follows that x = b−a

2 and y = 3a−b
4 , so 3a > b

(again, a reduction (mod 4) of 3a −b tells us that y is an integer). As we see, the
cases counted here are exactly those that were not counted in (4.3). Therefore
the total number of fixed points (so far) is a number of divisors of p divided by 2
(because we require a < b).

Finally, if (−5x+2y−4z,−6x+3y−4z,3x−y+3z) = (x, y, z) then p = 3x2+12xz+
8z2. Reduction (mod 3) implies that p ≡ 2 (mod 3) – again a contradiction.

We see that there are exactly d(p)
2 fixed points. But from the proof of Theorem

20 we know that it is odd if and only if p is a prime. Therefore also the number
of fixed points of (x, y, z) 7→ (x, z, y), i.e., representations of p as a quadratic form
3x2 +4y2, is odd if and only if p is a prime. The proof is finished.

We will not prove Theorem 22 here, because it requires a slightly different
approach. However, if the reader is familiar with the algebraic number theory,
the proof in the article [3] is approachable.

Now we are ready to state the Algorithm 4.5.
The algorithm correctly identifies primes. We argue as follows. The first loop

(x, y changing from 1 to
⌊p

n
⌋

) uses three theorems shown above. According to
the theorems, all squarefree numbers of the form 12k + 1, 12k + 5, 12k + 7 and
12k + 11 will be marked as primes if and only if they are primes. The numbers
from other residue classes are not considered, because (with the only two excep-
tions of 2 and 3) they must be composite. Hence at the end of the main loop all
squarefree numbers will be correctly sieved.

In the second phase we deal with the remaining numbers. The numbers di-
visible by 2 or 3 need not be considered, because we already ruled them out by
properly partitioning them according to their residue class (mod 12). Later, for
every prime greater than 3, we sieve out the numbers that are divisible by this
prime squared. Obviously, a prime will not be removed because it is squarefree.
Consider now a number m that is divisible by a prime squared and therefore
is not squarefree. We have m = p2k where p is a prime so this number will be
crossed out when i = p in the last loop. This shows that the algorithm is correct.

Let’s analyze the complexity of Algorithm 4.5. The main loop runs for time

O
(⌊p

n
⌋2

)
=O (n). The auxiliary loop runs for time

∑
5≤p≤pn

n

p2 = n ·O (1) =O (n) ,

so the total time is O (n). Also, from Theorem 19, we know that the number of
squarefree numbers smaller than n is asymptotically

(
1− 6

π2

)
n, so the auxiliary

loop (which sieves out square numbers) cannot be further optimized. However,
with some additional work the running time of this algorithm can be improved

to be O
(

n
loglogn

)
(see Section 4.5).
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Require: A[i ] for 5 ≤ i ≤ n - an array of numbers to sieve for primes
Ensure: A[i ] = 1 iff i is a prime number

1: for i ← 5. . .n do
2: A[i ] ← 0
3: end for
4: for x ← 1. . .

⌊p
n

⌋
do

5: for y ← 1. . .
⌊p

n
⌋

do
6: if 4x2 + y2 ≡ 1 or 5 (mod 12) ∧ 4x2 + y2 ≤ n then
7: A[4x2 + y2] = 1− A[4x2 + y2]
8: end if
9: if 3x2 +4y2 ≡ 7 (mod 12) ∧ 3x2 +4y2 ≤ n then

10: A[3x2 +4y2] = 1− A[3x2 +4y2]
11: end if
12: if 3x2 − y2 ≡ 11 (mod 12) ∧ 3x2 − y2 ≤ n ∧ x > y then
13: A[3x2 − y2] = 1− A[3x2 − y2]
14: end if
15: end for
16: end for
17: for i ← 5. . .

⌊p
n

⌋
do

18: if A[i ] = 1 then
19: for k ∈ {

i 2,2i 2,3i 2, . . .
} ∧ k ≤ n do

20: A[k] = 0
21: end for
22: end if
23: end for

Algorithm 4.5: Sieve of Atkin.

The authors of [3] also give a highly optimized implementation of their algo-
rithm. It is available at [4] and will be used to generate primes in Section 6.3.

4.5 Possible improvements

It is easy to obtain a theoretical bound on the number of steps needed to obtain
a list of primes up to the number n. Let’s start, like always, with a list A of num-
bers from 2 to n. We require at the end of an algorithm to be able to distinguish
prime numbers from the rest. It means that A[i ] 6= A[ j ] for every pair of numbers
where either i or j (but not both!) is prime. But this means that the algorithm
has to change the value of at least π(n) (number of primes) or (n −π(n)) (num-
ber of composites) elements. Therefore the running time of any prime sieving
algorithm is at least

min(π(n),n −π(n)) = min
(
n/logn,n −n/logn

)= n/logn,
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for a big enough n and from Prime Number Theorem (Theorem 13). We don’t
know any algorithm running in such a time. This also shows why the previous
algorithms were at best linear – they cross out composites. There are asymptoti-
cally n of them in the range from 1 to n, so this is the minimal number of steps
if one sieves out every composite number.

However, as we will later see, the number of sieved composites can be made
smaller by simple techniques.

Wheel data structure

A wheel is a data structure that allows to explicitly ignore numbers that must be
composite numbers. For example, there is no need to consider even numbers
(apart from 2). We could ignore as well multiples of 3, of 5, etc. This leads to the
idea of considering Mk , a product of first k primes

Mk = p1 ·p2 · . . . ·pk .

The wheel is a list of Mk elements indexed from 0 to Mk −1. The k-th element
represents numbers congruent to k mod Mk . We set, for i ∈ {0,1, . . . , Mk −1}:

M [i ] =
{

0, if i is not coprime to Mk ,

di , if i is coprime to Mk ,
(4.4)

where di is the smallest positive integer, such that i +di is coprime to Mk .
We can compute this data structure for the given k in the time proportional

to Mk ([13]). With this additional information we can “skip” the numbers that
cannot be primes. To see how many numbers we will skip, let’s compute ϕ(Mk ),
namely

ϕ(Mk ) =ϕ(p1) ·ϕ(p2) · . . . ·ϕ(pk ) = (p1 −1) · (p2 −1) · . . . · (pk −1).

Consequently, we observe that the ratio of numbers coprime to Mk to all num-
bers is

ϕ(Mk )

Mk
= ∏

p≤pk

p −1

p
= ∏

p≤pk

(
1− 1

p

)
.

From Mertens’ Third Theorem (Theorem 12) we obtain positive constants c1 and
c2, such that

c1

log pk
< ϕ(Mk )

Mk
< c2

log pk
, (4.5)

for k large enough.
In practice Mk is taken to be between n1/3 and n1/2. This assumption and

Theorem 5 imply that

c3

loglogn
< 1

log pk
< c4

loglogn
(4.6)
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for some positive contants c3 and c4. The inequalities (4.5) and (4.6) together give

c1c3

loglogn
< ϕ(Mk )

Mk
< c2c4

loglogn
.

Therefore, the fraction of integers that we will have to check for the primality
is bounded from above and below by the function 1

loglogn multiplied by some
positive constants. Informally, the work to be done will be reduced by a fac-
tor of 1

loglogn (the upper bound) and cannot be improved upon anymore by this
method (the lower bound).

The method will reduce the number of steps in sieve of Eratosthenes, sieve
of Pritchard or sieve of Atkin, so that the running complexity for each algorithm
can be:

• Sieve of Eratosthenes – O (n),

• Sieve of Pritchard – O
(
n/loglogn

)
,

• Sieve of Atkin – O
(
n/loglogn

)
.

For more details see [37].

Segmented sieve

All the presented methods use memory of size O(n) to store the whole list of
numbers. Another approach is to split the whole range of the numbers to sieve
into “segments”. For example, to sieve primes in the range [1,100], one can first
get primes in the range [1,25] then, using the primes just sieved, find primes in
the range [26,50] and so on.

There are two reasons to do that:

• Smaller memory usage – this can effectively lead to an algorithm using
O(

p
n) of space.

• Better locality of the memory – smaller segments improve the locality of
the memory and can significantly improve the speed of computation. Cur-
rently processors have very fast cache memories that are by an order of
magnitude faster than RAM memory (cf. Table 4.1). Therefore fitting the
working set memory into processor’s cache may dramatically accelerate
the process of sieving.

In [19] the sieve of Atkin’s is improved to use only space of order O(n1/3+ε).
In [38] the other researchers show an algorithm with the running time of only
O

(
n(logn)2/loglogn

)
, but with a conjectured memory consumption of order

O
(
(logn)3/loglogn

)
. The conjectured complexity depends on the validity of Ex-

tended Riemann Hypothesis.
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Memory type Number of cycles

Register ≤ 1
L1 cache ∼ 3
L2 cache ∼ 14

Main Memory ∼ 240

Table 4.1: Memory access speed in Pentium M

4.6 Summary

This chapter gave an exposition of important prime sieving algorithms. Although
the most popular is the Sieve of Eratosthenes, we showed that it is not the most
optimal algorithm for this problem. Apart from presentation of this algorithms,
we also showed possible improvements that can be made to improve both run-
ning and space complexity. Finally, we proved two out of three theorems needed
in the Sieve of Atkin in a different way than the authors.
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Chapter 5
Sieve methods

5.1 History and results

After the exposition of sieving algorithms, we will describe sieving techniques
used to obtain powerful theorems on the distribution of primes. In particular,
with Brun’s sieve we will be able to obtain the famous theorem proved in 1916 by
Viggo Brun ([5]), stating that the sum

∑
p,p+2

are primes

(
1

p
+ 1

p +2

)

converges.
A motivating example is to see problems in number theory which were at-

tacked by sieve methods (we mostly follow [24]). We have of course the famous
problem communicated by Goldbach to Euler:

Conjecture 7 (Goldbach’s Conjecture). Let n be an even integer greater than 2.
Then n can be represented as a sum of two prime numbers.

We have also a generalization of Bertrand’s postulate (cf. Theorem 4):

Conjecture 8 (On primes in the interval (n,n +p
n)). For n big enough, the in-

terval (n,n +p
n) contains a prime.

Finally there is the already mentioned conjecture on the infinitude of prime
twins (Conjecture 1).

All of them are long standing problems, tantalizing the mathematicians for
centuries. For a very long time there was virtually no method to approach them.
That was till around 1920 when Viggo Brun showed the following theorems:

Theorem 24. Every sufficiently large even integer can be represented as a sum of
two numbers each of which has at most nine prime factors,
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Theorem 25. If n is large enough, then the interval (n,n+p
n) contains a number

with at most eleven prime factors,

Theorem 26. There are infinitely many pairs of numbers of difference 2, such that
both of them have at most nine prime factors.

He also showed

Theorem 27. For sufficiently large x, the number of prime twins not exceeding x,
denoted π2(x), is

π2(x) ≤ 100x

log2 x
.

Quite unjustly, Brun’s methods were not recognized immediately. It seems
that mathematicians did not believe that such elementary methods (Brun’s sieve
is basically a combinatorial tool) could be used to approach such difficult con-
jectures like those given above. There is an anecdote that E. Landau did not read
Brun’s paper for a decade because of this superstition. This skepticism was par-
tially overcome when in 1933 L. G. Shnirelman proved his weak statement of
Goldbach’s conjecture ([35]):

Theorem 28. There exists a positive integer s, such that every sufficiently large in-
teger is the sum of at most s primes.

Another major milestone was set in 1947 by A. Selberg. Selberg’s sieve method
is simpler to understand and quite often leads to better results. This again is the
example of the upper bound sieve.

The methods of Brun and his successors work with numbers smaller than N ,
which are then sieved using primes not exceeding a certain threshold N c . If we
could set c = 1

2 , then the remaining numbers would be primes, of course, and
we could estimate and bound precisely the number of primes in this range. But
this is in general beyond the reach. One can see that all theorems of Brun above
refer to numbers with a bounded number of prime factors. Some work was done
to overcome this limitation. For example P. Kuhn in 1941 realized that one can
obtain better bounds for the number of prime factors by “weighting” the sieve in
a certain way, relaxing the restriction.

These ideas were used by J. R. Chen who in 1975 established

Theorem 29 (Chen’s Theorem I). If n is large enough, then the interval (n,n +p
n) contains an integer with at most two prime factors.

He also showed ([7])

Theorem 30 (Chen’s Theorem II). Every sufficiently large even number can be
written as the sum of either two primes, or a prime and an integer that is a prod-
uct of at most 2 primes,
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and

Theorem 31 (Chen’s Theorem III). There are infinitely many pairs of numbers of
difference 2, such that the smaller number in the pair is a prime and the larger is
a product of at most two primes.

These results are proven using basically the same approach, it seems that all
these problems are deeply connected.

Sieve theory is a very exciting area of research. One of the relatively recent re-
sults that used deep sieve methods was a result of H. Iwaniec and J. Friedlander,
who showed ([18])

Theorem 32. There are infinitely many primes of the form x2 + y4,

and a result of D. R. Heath-Brown ([27]):

Theorem 33. There are infinitely many primes of the form x3 +2y3.

These striking results show that the sieve theory can continuously provide inter-
esting and better results in number theory.

In the following sections of this chapter we generally follow [40].

5.2 Sieve of Eratosthenes

Let’s write
P = ∏

p≤px

p.

An integer n, such that
p

x < n ≤ x is a prime number if and only if P and n are
coprime or (P,n) = 1. To formalize it, we can write

π(x)−π(
p

x)+1 = ∑
n≤x

δ((n,P )),

where

δ(n) =
{

1, if n = 1,

0, otherwise.

But we have
δ((n,P )) = ∑

d |(n,P )
µ(d) = ∑

d |n
d |P

µ(d). (5.1)

Hence:

π(x)−π(
p

x)+1 = ∑
n≤x

∑
d |n
d |P

µ(d) = ∑
de≤x

∑
d |P

µ(d) = ∑
d |P

µ(d)
∑

e≤ x
d

1 =

= ∑
d |P

µ(d)
⌊ x

d

⌋
. (5.2)
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In fact this is a concealed application of inclusion-exclusion principle. Indeed, if
we let P = p1p2 . . . pk , then

∑
d |P

µ(d)
⌊ x

d

⌋
= ∑

d |P
ν(d) even

⌊ x

d

⌋
− ∑

d |P
ν(d) odd

⌊ x

d

⌋
= n −

⌊
n

p1

⌋
−

⌊
n

p2

⌋
− . . .−

⌊
n

pk

⌋
+

+
⌊

n

p1p2

⌋
+

⌊
n

p1p3

⌋
+ . . .+

⌊
n

p1pk

⌋
+

⌊
n

p2p3

⌋
+ . . .+

⌊
n

pk−1pk

⌋
−

−
⌊

n

p1p2p3

⌋
− . . .−

⌊
n

pk−2pk−1pk

⌋
+

+ . . .+ (−1)k
⌊

n

p1p2 · . . . ·pk

⌋
.

This formula can be used to obtain a value of π(x) for very large values of x ([41,
288–292]).

Let us go back to (5.2) and estimate its value by taking bx/dc = x/d+O(1). We
obtain

π(x)−π(
p

x)+1 = x
∑
d |P

µ(d)

d
+O

(
2π

p
x
)
= x

∏
p|P

(
1− 1

p

)
+O

(
2π

p
x
)
=

= x
∏

p≤px

(
1− 1

p

)
+O

(
2π

p
x
)

.

This can be estimated by means of Mertens’ Theorem (Theorem 11). Then the
main term is

O

(
x

log x

)
and agrees with the Prime Number Theorem (Theorem 13). Sadly, the error term

O
(
2π

p
x
)

is actually bigger and this approximation is useless.

To overcome this, let’s take a parameter y instead of
p

x above. Then, by the
same computation, we will arrive at:

π(x)−π(y)+1 = x
∏

p≤y

(
1− 1

p

)
+O

(
2π(y))= x

e−γ+o(1)

log y
+O

(
2y )

,

where e is the Napier’s constant and γ is the Euler-Mascheroni constant. Thus

π(x) ≤ x
e−γ+o(1)

log y
+O

(
2y )

.

To equate the two terms, the optimal choice is to take y = log x. This gives

π(x) ≤O

(
x

loglog x

)
, (5.3)

which is obviously inferior to the approximation from the Prime Number Theo-
rem. However, the generality of this method is amazing, as we will see.
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Let’s find the basic ingredients in the recipe above. First, we have a set that
we sieve – a set of numbers not greater than x in our case. We also have a char-
acteristic function (sifting function) of the subset that we want to sieve out (or
not to sieve out) – this is (5.1). Finally, by representing the sifting function in a
convenient way and using a derived approximation (i.e., Mertens’ Theorem) we
get the result.

Therefore, let us use our new tool in a different setting. We will prove

Theorem 34 (Asymptotic formula for the number of squarefree numbers).
Let Q(x) be the number of squarefree numbers not bigger than x. Then

Q(x) = 6

π2 x +O
(p

x
)

. (5.4)

Proof. The set we are about to sieve is again a set of numbers not greater than
x. We must now find a characteristic function for the set of squarefree numbers.
Obviously, the absolute value of Möbius function is such a function. One can try
this, but the obtained sum will not be easy to work with. We instead observe that
the following function is also a characteristic function for squarefree numbers:

s(n) = ∑
d 2|n

µ(d).

First observation is that this function is multiplicative. Indeed, if n = ab and
(a,b) = 1 then

∑
d 2|ab

µ(d) = ∑
e2|a

∑
f 2|b

µ(e f ) =
(∑

e2|a
µ(e)

)( ∑
f 2|b

µ( f )

)
.

We used the fact that if ab is square, for a,b coprime, then both a and b are
squares. Consequently, it’s enough to check only the value of s(n) for powers of
prime numbers. Hence, let n = pk . If k ≤ 1 then the only term in the sum is µ(1)
= 1. If k ≥ 2, we get

s
(
pk

)
=µ (1)+µ(

p
)+µ(

p2)+ . . .+µ
(
pbk/2c

)
= 1−1+0 = 0.

We now have

Q(x) = ∑
n≤x

s(n) = ∑
n≤x

∑
d 2|n

µ(d) = ∑
d 2e=n≤x

µ(d) =

= ∑
d≤px

∑
e≤ x

d2

µ(d) = ∑
d≤px

µ(d)
⌊ x

d 2

⌋
= x

∑
d≤px

µ(d)

d 2 +O
(p

x
)=

= x

(
1

ζ(2)
− ∑

d>px

µ(d)

d 2

)
+O

(p
x
)= x

ζ(2)
+O

(
x

∑
d>px

1

d 2

)
+O

(p
x
)

.
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But, using Euler’s formula (Theorem 7) we may deduce that

x
∑

d>px

1

d 2 =O

(
x

1p
x

)
=O

(p
x
)

.

This finishes the proof.

This is a very interesting fact - roughly 61% of the numbers are squarefree.

We may know state the sieve problem. Let A be a set of any positive integers.
The general goal is to estimate the number of primes in A . Ideally, an asymptotic
formula is obtained.

In practice, it is convenient to introduce the following definitions and nota-
tion:

Ad = card {n ∈A : n ≡ 0 (mod d)} ,

Py =
∏

p≤y
p,

S(A ,P , y) = card
{
n ∈A : (n,Py ) = 1

}
,

because it’s easier to work with S(A ,P , y). Assume further that Ad can be writ-
ten as

Ad = X
ω(d)

d
+Rd ,

for some real X , some multiplicative function ω and a remainder term Rd , hope-
fully small. Finally, let I (n) be a characteristic function of primes in the set A .

We can now deduce that

S(A ,P , y) = ∑
n∈A

I (n) = ∑
n∈A

δ((n,Py )) = ∑
n∈A

∑
d |(n,Py )

µ(d) =

= ∑
n∈A

∑
d |n

d |Py

µ(d) = ∑
de∈A

∑
d |Py

µ(d) =

= ∑
d |Py

µ(d)
∑

ed∈A
1 = ∑

d |Py

µ(d)Ad =

= ∑
d |Py

µ(d)

(
X
ω(d)

d
+Rd

)
= X

∑
d |Py

µ(d)ω(d)

d
+ ∑

d |Py

µ(d)Rd =

= X
∏

p≤y

(
1− ω(p)

p

)
+ ∑

d |Py

µ(d)Rd .

Clearly, if the remainder Rd is sufficiently small and y is appropriately chosen,
then a precise approximation can be obtained.
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Let’s go to the example at the beginning of this chapter. To estimate π(x) we
used

A = {n : n ≤ x} ,

Ad =
⌊ x

d

⌋
= x

d
+O(1) (X = 1, ω(n) = 1, Rd =O(1)),

y = log x.

Unfortunately, the unrefined sieve of Eratosthenes is not enough to get esti-
mates about twin prime numbers. Although it is possible to improve the sieve of
Eratosthenes so that it is almost as powerful as the sieve of Brun ([9]), we do not
follow this path. Instead, in the next section, we present the sieve of Brun.

5.3 Brun’s sieve

Whereas the sieve of Eratosthenes is based on the equality between multiplica-
tive functions of the form µ∗1 = δ, i.e.,∑

d |n
µ(d) = δ(n).

The idea of Brun was to bound δ function by two functions µ1 and µ2, such that

µ1 ∗1 ≤ δ≤µ2 ∗1.

The choice of µ1 and µ2 leading to Brun’s sieve is

µ1(n) =µ(n)χ2h+1(n),

µ2(n) =µ(n)χ2h(n),

for any h ≥ 0, where χt is a characteristic function of numbers having at most t
prime factors. Actually Brun showed the following

Theorem 35 (Brun’s Theorem). For any h ≥ 0 we have

µ1(n)∗1 ≤ δ≤µ2(n)∗1. (5.5)

Proof. When n is not squarefree then (5.5) is true, because all sides of the in-
equality are zero. Let’s therefore consider n that is squarefree and let n be a
product of k different primes, that is ω(n) = k. For any i ≤ k there are exactly(k

i

)
numbers with i prime divisors dividing n. We have

(µ ·χt )∗1 (n) = ∑
d |n

ω(d)≤t

µ(d) = ∑
i≤t

(−1)i

(
k

i

)
=

= ∑
i≤t

(−1)i

((
k −1

i

)
+

(
k −1

i −1

))
= (−1)t

(
k −1

t

)
,

since the sum is telescopic. But this means that µ ·χt is positive for even t and
negative otherwise. This is exactly what we wanted to show.
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Keeping the same notation as in the previous section, we get

S(A ,P , y) = ∑
n∈A

δ((n,Py )) ≤ ∑
n∈A

∑
d |(n,Py )

µ(d)χ2h(d) =

= ∑
n∈A

∑
d |n

d |Py

µ(d)χ2h(d) = ∑
de∈A

∑
d |Py

µ(d)χ2h(d) =

= ∑
d |Py

µ(d)χ2h(d)
∑

ed∈A
1 = ∑

d |Py

µ(d)χ2h(d)Ad =

= ∑
d |Py

ω(d)≤2h

µ(d)Ad .

Similarly we may obtain the lower bound. These two bounds together give∑
d |Py

ω(d)≤2h+1

µ(d)Ad ≤ S(A ,P , y) ≤ ∑
d |Py

ω(d)≤2h

µ(d)Ad . (5.6)

The integer parameter h gives an additional degree of freedom. By setting it to a
proper value, one can improve the results of the sieve of Eratosthenes. Let’s see
how it can be used to obtain an improved bound on the prime counting function
π(x).

We have, just as in the derivation of (5.3), that

π(x) ≤ ∑
d |Py

ω(d)≤2h

µ(d)
⌊ x

d

⌋
+ y = ∑

d |Py

ω(d)≤2h

µ(d)
x

d
+O

y + ∑
d |Py

ω(d)≤2h

1

=

= x
∑

d |Py

µ(d)

d
−x

∑
d |Py

ω(d)>2h

µ(d)

d
+O

y + ∑
d |Py

ω(d)≤2h

1

=

= x
∏

p≤y

(
1− 1

p

)
+O

y + ∑
d |Py

ω(d)≤2h

1+x
∑

d |Py

ω(d)>2h

1

d

 . (5.7)

The second error term is bounded by y2h since this is a bound for any d in the
sum. To estimate the third term, let’s take any u ≥ 1. We have

∑
d |Py

ω(d)≤2h

1

d
≤ ∑

d |Py

uω(d)−2h

d
= u−2h

∏
p≤y

(
1+ u

p

)
≤ exp

(
−2h logu +u

∑
p≤y

1

p

)
.

By taking

u = 2h∑
p≤y

1
p

,
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we get (by Theorem 10)

2h = u
∑

p≤y

1

p
= u loglog y +B ·u +O

(
u

log y

)
¿u u loglog y.

Consequently, one obtains that the third error term is

¿u exp
(
2h(1− logu)

)= (
log y

)u(1−logu) = (
log y

)u−u logu .

Now, it’s easy to see that u −u logu is greater than 3 if u > 5. Moreover, for suffi-
ciently large y there must be an u (depending on y), such that 5 < u < 6 and

h = 1

2
u

∑
p≤y

1

p

is an integer. We now know that the third term is smaller than

x(log y)−3.

Similarly, the second term is smaller than

y2h = yu loglog y = exp
(
6log y loglog y

)
.

If we finally set

log y = log x

10loglog x
,

then (5.3) becomes

y2h ≤ exp

(
6

log x

10loglog x
log

log x

10loglog x

)
= x

3
5loglog x

log x

10loglog x
< x

3
4 ,

for x big enough.
By collecting all the bounds we obtained before, (5.7) becomes

π(x) ≤ x
∏

p≤y

(
1− 1

p

)
+O

(
x

3
4 +x

(loglog x)3

(log x)3

)
=O

(
x

loglog x

log x

)
+o (x) .

So the final result is

π(x) ¿ x loglog x

log x
.

This is still inferior to the Prime Number Theorem, but is a substantial improve-
ment over (5.3). But almost the same reasoning allows us to prove the theorem
of Brun.
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Theorem 36 (Brun’s Theorem II). The number of primes p, such that p < x and
p +2 is a prime too, denoted π2(x), satisfies

π2(x) ¿
(

loglog x

log x

)2

.

Proof. The set of numbers to sieve is

A = {m(m +2) : m ≤ x} .

As before, we have

π2(x) ≤ S(A ,P , y)+ y ≤ ∑
d |Py

ω(d)≤2h

µ(d)Ad ,

where Ad is the number ρ(d) of solutions m ≤ x to the congruence

m(m +2) ≡ 0 (mod d) .

We can solve it only for primes and then use the Chinese Remainder Theorem to
get the final result. We obviously have ρ(2) = 1. Also, for odd prime p, ρ(p) = 2
since either p | m or p | (m + 2). Now, each interval of length d contains ρ(d)
numbers m counted in the set Ad . This means that one can write

Ad = x
ρ(d)

d
+O

(
ρ(d)

)
.

Performing calculations parallel to those above, we will get

π2(x) ≤ x
∑

d |Py

µ(d)ρ(d)

d
+O

y + ∑
d |Py

ω(d)≤2h

ρ(d)+x
∑

d |Py

ω(d)>2h

ρ(d)

d

 .

The main term is

x
∑

d |Py

µ(d)ρ(d)

d
= x

(
1− 1

2

) ∏
3≤p≤y

(
1− 2

p

)
≤ 2x

∏
3≤p≤y

(
1− 1

p

)2

∼C
x

(log y)2 ,

for some constant C . Now, by the same method as above, we will obtain

h = c1 loglog y +O(1)

log y = c2
log x

loglog x
,

with appropriate constants c1 and c2, such that the error term is smaller than the
main term. But then the main term is

C
x

(log y)2 =C ′x
(

loglog x

log x

)2

,

for another constant C ′. This is exactly what we wanted to prove.
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From this result we obtain as an easy corollary, the main result of this chapter.

Theorem 37 (Brun’s Theorem III).

∑
p,p+2

are primes

(
1

p
+ 1

p +2

)
<∞.

Proof. We use Abel’s summation formula (Theorem 6) with

a(n) =
{

1, if both n,n +2 are primes,

0, otherwise,

f (x) = 1

x
.

Then we get

1

2

∑
p,p+2

are primes,p≤x

(
1

p
+ 1

p +2

)
≤ ∑

p,p+2
are primes,p≤x

1

p
= ∑

3≤n≤x
a(n) f (n) =

= π2(x)

x
+

∫ x

3

π2(t )

t 2 d t ¿

¿
(

loglog x

log x

)2

+
∫ x

3

1

t

(
loglog t

log t

)2

d t .

The first term converges to zero as x goes to the infinity. Moreover, the integral∫ x

3

1

t

(
loglog t

log t

)2

d t

converges as x approaches the infinity. This means that the sum we started with
is bounded and therefore converges.

5.4 Summary

In this chapter we proved a weak statement of Brun’s theorem. From this fact,
it follows directly that the sum of inverses of twin primes converges to a finite
value. To achieve this remarkable result we used Brun’s combinatorial sieve – a
relatively modern tool in number theory.
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Chapter 6
Related constants

There are two constants related to the Twin Prime Conjecture:

• the twin prime constant – defined already in Chapter 3,

• the Brun’s constant.

As we will see, the former one is much easier to compute.

6.1 Description of the environment

The experiments were performed on a PC computer with Intel Core i5-2410M
(2.3 GHz) processor and 8GB of DDR3 operating memory. To generate primes,
primegen program is used ([4]). It is written in C language and was compiled
using GCC compiler (version 4.5.2). High precision computation was performed
using mpmath library ([28]) at version 0.17 with GMP library ([20]) at version
4.3.2 as a backend. The version of Python distribution was 2.7.1+.

All programs written to obtain results from this thesis can be downloaded
from https://bitbucket.org/thinred/twinprimes/.

6.2 Computation of C2

Analysis

In this section the problem of calculating C2 constant is described. The goal is to
obtain a computationally feasible formula and to calculate the constant with a
high precision.

Let’s start with the infinite product that defines C2, i.e.,

C2 =
∏
p≥3

(
1− 1

(p −1)2

)
. (6.1)
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Primes needed Correct digits

3 0.6601618158468
6 0.6601618158468

31 0.6601618158468
305 0.6601618158468

1019 0.6601618158468
23378 0.6601618158468
45599 0.6601618158468

624284 0.6601618158468

Table 6.1: Convergence of the infinite product (6.1).

The convergence of this product is very slow. Table 6.1 shows how many primes
are needed to obtain the first, the second, etc., digit of C2.

For the sake of completeness, we provide the following formulas for C2 ([23]):

C2 =
∑

n≥1
n odd

µ(n)

ϕ2(n)
= 1

8

∑
n≥1

n odd

µ(n)2ν(n) log2 n

n
.

Unfortunately, they are equally impractical, because of the required compu-
tation of arithmetic functions ϕ(n) (Euler’s totient function) and ν(n) (number of
prime factors of n) and slow convergence.

To derive a better formula, we will use a method described in [17]. Let’s start
with some helpful definitions.

Definition (Truncated zeta function). Let q be a prime number. The truncated
zeta function ζ≥q is defined as

ζ≥q (s) = ∏
p≥q

(
1−p−s)−1 = ζ(s)

∏
p<q

(
1−p−s) . (6.2)

Definition (Truncated prime zeta function). Let q be a prime number. The trun-
cated prime zeta function P≥q is defined as

P≥q (s) = ∑
p≥q

p−s . (6.3)

We have

logζ≥q (s) =− ∑
p≥q

log
(
1−p−s)= ∑

p≥q

∑
m≥1

1

mp sm =

= ∑
m≥1

1

m

∑
p≥q

p−sn = ∑
m≥1

1

m
P≥q (sm).

Using Möbius inversion formula, we obtain another representation of P≥q ,
that is,

P≥q (s) = ∑
m≥1

µ(m)

m
logζ≥q (sm). (6.4)
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By applying the logarithm on both sides of (6.1), we get

logC2 =
∑
p≥3

log

(
1− 1

(p −1)2

)
= ∑

p≥3
log

1− 2
p(

1− 1
p

)2 =

= ∑
p≥3

(
log

(
1− 2

p

)
−2log

(
1− 1

p

))
=

= ∑
p≥3

( ∑
m≥1

2

mpm − ∑
m≥1

2m

mpm

)
=

= ∑
p≥3

∑
m≥1

2−2m

mpm = ∑
p≥3

∑
m≥2

2−2m

mpm =

= ∑
m≥2

2−2m

m

∑
p≥3

p−m = ∑
m≥2

2−2m

m
P≥3(m) = (6.5)

= ∑
m≥2

2−2m

m

∑
k≥1

µ(k)

k
logζ≥3(mk) =

= ∑
k≥1

∑
m≥2

2−2m

m

µ(k)

k
logζ≥3(mk) =

= ∑
k,m≥1

(k,m) 6=(1,1)

2−2m

m

µ(k)

k
logζ≥3(mk),

by applying (6.4) and noting that 2−2m is zero for m = 1.
Now, taking n = mk and d = k, we observe that as m and k change, n runs

over all natural numbers greater than 2 and d runs over divisors of n. Therefore

logC2 =
∑

n≥2

∑
d |n

2−2n/d

n
µ(d) logζ≥3(n) =

= 2
∑

n≥2

logζ≥3(n)

n

∑
d |n

µ(d)− ∑
2≥n

log
logζ≥3(n)

n

∑
d |n

µ(d)2n/d =

=− ∑
n≥2

log
logζ≥3(n)

n

∑
d |n

µ(d)2n/d =

= log
∏
n≥2

[ζ≥3(n)]−
∑

d |n µ(d)2n/d
,

since
∑

d |n µ(n) is zero for n > 1. Finally, we obtain an interesting formula for C2:

C2 =
∏
n≥2

[ζ≥3(n)]−In = ∏
n≥2

[
ζ(n)

(
1−2−n)]−In , (6.6)

where

In = 1

n

∑
d |n

µ(d)2n/d . (6.7)

To see whether the convergence of this formula is improved we first must an-
alyze In . Quite surprisingly, In is the number of irreducible monic polynomials
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of degree n with coefficients from GF(2). In fact, it is easy to prove even a more
general theorem, originally due to Gauss. The proof below comes from [9, pages
49–50] and shows a remarkable resemblance to the arguments above, justifying
the presence of In in (6.6).

Theorem 38 (On polynomials with coefficients from GF(p)). Let In be the num-
ber of irreducible monic polynomials from GF(p)[x] (p - prime) of degree n. Then

In = 1

n

∑
d |n

µ(d)pn/d . (6.8)

Proof. There are pn monic polynomials of degree n. Let’s write a power series
with a formal parameter T for these numbers:∑

f
T deg f = ∑

n≥0
pnT n = 1

1−pT
,

where f runs over all monic polynomials.
On the other hand, GF(p)[x] is a Euclidean domain, so every monic polyno-

mial has a unique representation as a product of monic irreducible polynomials.
Thus we can write an Euler product for the above series as

1

1−pT
=∏

v

(
1−T deg v

)−1 = ∏
m≥1

(
1−T m)−Im ,

where v runs over all irreducible monic polynomials.
If we take a logarithm on both sides of the above equation we will have

log(1−pT )−1 = ∑
n≥1

1

n
pnT n

and

log
∏

m≥1

(
1−T m)−Im = ∑

m≥1
−Im log

(
1−T m)=

= ∑
m≥1

∑
n≥1

Im

n
T nm = ∑

m≥1

∑
n≥1

mIm

nm
T nm =

= ∑
n≥1

∑
d |n

d Id

n
T n .

If we equate the coefficients, then immediately

pn = ∑
d |n

d Id .

To get the value of In and finish the proof, we invert the above identity and get

In = 1

n

∑
d |n

µ(d)pn/d .

This finishes the derivation.
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n In n In

1 2 11 2046
2 2 12 4020
3 6 13 8190
4 12 14 16254
5 30 15 32730
6 54 16 65280
7 126 17 131070
8 240 18 261576
9 504 19 524286

10 990 20 1047540

Table 6.2: Values of In .

Using (6.7) it is easy to show an asymptotic formula, an analogue of prime
number theorem. Namely

∣∣∣∣∣ 1

n

∑
d |n

µ(d)2n/d − 2n

n

∣∣∣∣∣=
∣∣∣∣∣∣∣

1

n

∑
d |n
d>1

µ(d)2n/d

∣∣∣∣∣∣∣≤
1

n

∑
d |n
d>1

2n/d = 1

n

∑
d |n

d≤ n
2

2d =O

(
2n/2

n

)
,

so

In = 2n

n
+O

(
2n/2

n

)
. (6.9)

From this we see that In roughly doubles with n (cf. Table 6.2), since

In+1

In
=

2n+1

n+1 +O
(

2(n+1)/2

n+1

)
2n

n +O
(

2n/2

n

) =
2

n+1 +O
(

2(1−n)/2

n+1

)
1
n +O

(
2−n/2

n

) −−−−−−−→
n→∞ 2.

The main term of ζ(n) (1−2−n) in (6.6) is 3−n . The exponent −In slows down the
convergence by a factor of 2. Therefore the product converges like

(2
3

)n
or gives

about log10

(2
3

)≈ 0.18 decimal digits per term.
This is satisfactory, but we can do better than that. In (6.5) we can introduce

an arbitrary prime number q ≥ 3 to obtain

logC2 =
∑

m≥2

2−2m

m

∑
p≥3

p−m = ∑
m≥2

2−2m

m

( ∑
p≥q

p−m − ∑
3≤p<q

p−m

)
=

= ∑
m≥2

2−2m

m
P≥q (m)− ∑

m≥2

∑
3≤p<q

2−2m

mpm .

Using the same method as before, the first term will be

log
∏
n≥2

[
ζ≥q (n)

]−In .
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On the other hand, the second term is

− ∑
m≥2

∑
3≤p<q

2−2m

mpm = ∑
3≤p<q

∑
m≥1

2m −2

mpm =

= ∑
3≤p<q

2log

(
1− 1

p

)
− ∑

3≤p<q
log

(
1− 2

p

)
=

= ∑
3≤p<q

log

(
1− 1

(p −1)2

)
= log

∏
3≤p<q

(
1− 1

(p −1)2

)
.

This gives us the following:

C2 =
∏

3≤p<q

(
1− 1

(p −1)2

) ∏
n≥1

[
ζ≥q (n)

]−In , (6.10)

or even more concisely:

∏
p≥q

(
1− 1

(p −1)2

)
= ∏

n≥1

[
ζ≥q (n)

]−In ,

which is a formula for a value of a “tail” in the product defining C2.
By the same analysis as before, the convergence of (6.10) is of order 2

q . For
example, if we take q = 23, then

C2 = 1836515055375

2751882854400

∏
n≥1

[ζ(n)
(
1−2−s)(1−3−s)(1−5−s)(1−7−s)

(
1−11−s)(1−13−s)(1−17−s)(1−19−s)]−In , (6.11)

which produces more than one decimal digit per each term.
The mpmath library already has an implementation of this algorithm using

q = 11. We use formula with q = 59 to compute C2 to a high precision. With this
parameter we observed a noticeable acceleration of calculation. This can be seen
in Figure 6.1. The new implementation runs almost twice as fast as the old one,
but nevertheless the time required is exponential with respect to the required
precision.

The twin prime constant C2 was computed to 15000 decimal places. It took
210 hours (almost 9 days) to perform this computation.

Constant value
C2 = 0.660161815846869573927812110014555778432623360284733413319448423335405642304

495277143760031413839867911779005226693304002965847755123366227747165713213
986968741097620630214153735434853131596097803669932135255299767199302474590
593101082978291553834469297505205916657133653611991532464281301172462306379
341060056466676584434063501649322723528968010934966475600478812357962789459
842433655749375581854814173628678098705969498703841243363386589311969079150
040573717814371081810615401233104810577794415613125444598860988997585328984
038108718035525261719887112136382808782349722374224097142697441764455225265
548994829771790977784043757891956590649994567062907828608828395990394287082
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Figure 6.1: Comparison of the two implementations to compute the twin prime
constant C2. The new one runs almost two times faster.
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6.3 Computation of Brun’s constant

Analysis

We don’t know a formula for Brun’s constant apart from the very series that de-
fine it, that is, ∑

p,p+2
primes

(
1

p
+ 1

p +2

)
.

This sum converges very slowly and we cannot be sure even about the first places
after the decimal point. The contribution, even from the terms with large primes,
is too huge.
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We generated pairs of twin prime numbers up to 1010 and computed their
inverses. The computation was done using 1000 decimal places of working pre-
cision. It took few hours to get the result.

Pentium FDIV bug

In 1994, Thomas Nicely has found a bug in a model of Pentium processor while
computing the Brun’s constant. The bug called “Pentium FDIV bug” became ap-
parent when Nicely found some inconsistencies in his computations. The prob-
lem was indeed very rare, but possible. It manifested itself when specific pairs of
floating pairs of numbers very divided by each other. For example when diving
4195835 by 3145727, one obtains

1.333820449136241.

However, the flawed processor would return

1.333739068902037,

which is incorrect at the fourth digit after the decimal point. Intel, the manufac-
turer of the processor, was reluctant to resolve the issue, but finally decided to
launch a total recall of the flawed processors. See [32] for the whole story and
more information.

Constant value
B2 = 1.787478502719241547462733488112922305186347082870490276443886

785134304627944705006934983357962504580889791864334708955335
799763209595463836945614096849275263964189345129516018645965
212880946219679633660549661415643471637663261081755032013206
798954969074832711478050359686427592267162298225032645309255
018398532729766468246817031613214189733005355424926814502294
862918240830813256956127505365069166047223892666627528787928
483914544351500521538401071346968983863350112214642182948694
340936684517061568704503175576493536396872774472929548684860
021100108835040836278688623640240155948033628746500474040597
924274388035790737266633948848784077553455784769972463053249
329077468283739392032926928284858384246109836330821477244450
650819603293459858549021537214247749061546950140518285085345
256787436296650034782938631012685252906107657846744251126302
647307224824396169475348517040982110558429259562683152948945
062713389006258931583300255628407381355675938095076914636684

6.4 Summary

We introduced the problem of computing constants related to the Twin Prime
Conjecture. The twin prime constant has a convenient series that can be used to
compute it to a desired precision, yet the computation still takes the exponential
time to finish.

A much more complicated problem is to compute Brun’s constant B2. To the
author’s knowledge, there are no known formulas other than the definition itself.
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Chapter 7
Summary

In this thesis we presented the Twin Prime Conjecture and prime sieving algo-
rithms. We proved some theorems on the twin primes, their characterization and
distribution, and relation to other, mostly also unsolved, problems in the number
theory. In particular, we showed Brun’s theorem that states that the sum of recip-
rocals of twin primes converges. Moreover, we contrasted the current knowledge
about this conjecture with state-of-the-art algorithms for prime sieving. Finally,
we performed analysis of approaches used to compute related numerical con-
stants and time consuming computations thereafter. As a result, we obtained the
value of the twin prime constant to a very high precision.

For the prime sieving algorithms, the question remains open if there exists
an algorithm that can achieve the theoretical bound on the running complexity
of O

(
n/logn

)
. There is no algorithm known that achieves that bound. If it is not

possible to achieve this bound, a proof of this fact would be a step forward.
We also are not aware of a practical way to obtain value of Brun’s constant to

a high precision. The series that define the constant are very slowly convergent
and there is no obvious way to accelerate the convergence as it is possible wit
the twin prime constant.

The Twin Prime Conjecture remains unproven, but definitely there are seri-
ous attempts to prove it. It’s not clear, however, if the problem can be ultimately
resolved with the help of sieve methods. The deep and complicated work of Chen
resulted in a near miss attack on the conjecture, but nothing substantially im-
portant was proven since then in the domain of twin primes. There is however
serious interest in the research about small prime gaps, a subject that may re-
sult in the result related to the Twin Prime Conjecture. For example, it has been
conditionally proven (assuming Elliott-Halberstam Conjecture) that there exist
infinitely many primes whose difference is 16 or less ([22]).

There has been a lot of successful research on the Twin Prime Conjecture and
empirical evidence confirms it, but the main question remains open:

Are there infinitely many twin primes?

65



List of Theorems

1 Infinitude of primes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2 Mertens’ Second Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3 Legendre’s Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
4 Bertrand’s postulate, Chebyshev’s Theorem . . . . . . . . . . . . . . . . . 7
5 Bounds on the first Chebyshev function . . . . . . . . . . . . . . . . . . . 7
6 Abel’s summation formula . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
7 Euler’s summation formula . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
8 Asymptotic formula for the harmonic series . . . . . . . . . . . . . . . . . 10
9 Stirling’s approximation formula . . . . . . . . . . . . . . . . . . . . . . . . 11
10 Mertens’ First Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
11 Mertens’ Third Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
12 Weak Mertens’ Third Theorem . . . . . . . . . . . . . . . . . . . . . . . . . 14
13 Prime Number Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
14 Green-Tao Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
15 Wilson’s Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
16 Clement’s Theorem on twin primes . . . . . . . . . . . . . . . . . . . . . . 24
17 Generalization of Clement’s Theorem . . . . . . . . . . . . . . . . . . . . . 25
18 Characterization of twin primes by multiplicative functions . . . . . . . 27
19 Sergusov’s Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
20 On the quadratic form x2 +4y2 . . . . . . . . . . . . . . . . . . . . . . . . . 35
21 On the quadratic form x2 +3y2 . . . . . . . . . . . . . . . . . . . . . . . . . 35
22 On the quadratic form 3y2 −x2 . . . . . . . . . . . . . . . . . . . . . . . . . 36
23 On the quadratic form 4x2 +3y2 . . . . . . . . . . . . . . . . . . . . . . . . 38
29 Chen’s Theorem I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
30 Chen’s Theorem II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
31 Chen’s Theorem III . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
34 Asymptotic formula for the number of squarefree numbers . . . . . . . 48
35 Brun’s Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
36 Brun’s Theorem II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
37 Brun’s Theorem III . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
38 On polynomials with coefficients from GF(p) . . . . . . . . . . . . . . . . 58

66



Bibliography

[1] M. Aigner, G. M. Ziegler, and K. H. Hofmann. Proofs from the book. Springer,
2009.

[2] T. M. Apostol. Introduction to Analytic Number Theory. Number v. 1 in Un-
dergraduate Texts in Mathematics. Springer-Verlag, 1976.

[3] A. O. L. Atkin and D. J. Bernstein. Prime Sieves Using Binary Quadratic
Forms. Mathematics of Computation, 73:2004, 1999.

[4] D. J. Bernstein. primegen. http://cr.yp.to/primegen.html.

[5] V. Brun. Über das Goldbachsche Gesetz und die Anzahl der Primzahlpaare.
Archiv for Math. og Naturvid., 34(8), 1915.

[6] C. K. Caldwell. The Top Twenty: Twin Primes. http://primes.utm.edu/

top20/page.php?id=1#records.

[7] J. Chen. On the Representation of a Large Even Integer as the Sum of a
Prime and the Product of at Most Two Primes. II. Sci. Sinica, 21(4):421–30,
1978.

[8] P. A. Clement. Congruences for Sets of Primes. The American Mathematical
Monthly, 56(1):23–25, 1949.

[9] A. C. Cojocaru and M. R. Murty. An Introduction to Sieve Methods and Their
Applications. Cambridge University Press, Cambridge, 2005.

[10] T. H. Cormen. Introduction to Algorithms. MIT Electrical Engineering and
Computer Science. MIT Press, 2001.

[11] R. Crandall and C. Pomerance. Prime Numbers – A Computational Perspec-
tive. Springer, New York, second edition, 2005.

[12] L. E. Dickson. A new extension of Dirichlet’s theorem on prime numbers.
The Messenger of Mathematics, 33, 1903.

67

http://cr.yp.to/primegen.html
http://primes.utm.edu/top20/page.php?id=1#records
http://primes.utm.edu/top20/page.php?id=1#records


[13] B. Dunten, J. Jones, and J. Sorenson. A Space-Efficient Fast Prime Number
Sieve. In Information Processing Letters 59, pages 79–84, 1996.

[14] T. O. e Silva. Tables of values of π(x) and of π2(x). http://www.ieeta.pt/
~tos/primes.html.

[15] C. Elsholtz. Kombinatorische Beweise des Zweiquadratesatzes und Ve-
rallgemeinerungen. Mathematische Semesterberichte, 50:77–93, 2003.
10.1007/s00591-003-0060-3.

[16] P. Erdős. Über die Reihe
∑ 1

p . Mathematica, Zutphen, B 7:1–2, 1938.

[17] P. Flajolet and I. Vardi. Zeta Function Expansions of Classical Con-
stants. unpublished manuscript, http://algo.inria.fr/flajolet/

Publications/landau.ps, 1996.

[18] J. Friedlander and H. Iwaniec. Using a Parity-Sensitive Sieve to Count Prime
Values of a Polynomial. Proc Natl Acad Sci U S A, 94(4):1054, 1997.

[19] W. F. Galway. Dissecting a Sieve to Cut Its Need for Space. In Proceedings
of the 4th International Symposium on Algorithmic Number Theory, pages
297–312, London, UK, 2000. Springer-Verlag.

[20] The GNU Multiple Precision Arithmetic Library (version 4.3.2), October 2011.
http://gmplib.org/.

[21] D. A. Goldston, Y. Motohashi, J. Pintz, and C. Y. Yıldırım. Small Gaps be-
tween Primes Exist, May 2005.

[22] D. A. Goldston, J. Pintz, and C. Y. Yıldırım. Primes in Tuples I. Annals of
Mathematics, 170(2):819–862, 2009.

[23] S. W. Golomb. The Twin Prime Constant. The American Mathematical
Monthly, 67(8):767–769, 1960.

[24] G. Greaves. Sieves in number theory. Number v. 43 in Ergebnisse der Math-
ematik und ihrer Grenzgebiete. Springer, 2001.

[25] B. Green and T. Tao. The primes contain arbitrarily long arithmetic progres-
sions, February 2006.

[26] Julian Havil. Gamma : exploring Euler’s constant. Princeton University Press,
March 2003.

[27] D. R. Heath-Brown. Primes represented by x3 + 2y3. Acta Mathematica,
186:1–84, 2001. 10.1007/BF02392715.

[28] F. Johansson et al. mpmath: a Python library for arbitrary-precision floating-
point arithmetic (version 0.14), February 2010. http://code.google.com/
p/mpmath/.

68

http://www.ieeta.pt/~tos/primes.html
http://www.ieeta.pt/~tos/primes.html
http://algo.inria.fr/flajolet/Publications/landau.ps
http://algo.inria.fr/flajolet/Publications/landau.ps
http://gmplib.org/
http://code.google.com/p/mpmath/
http://code.google.com/p/mpmath/


[29] W. G. Leavitt and A. A. Mullin. Primes Differing by a Fixed Integer. Mathe-
matics of Computation, 37(156):581–585, 1981.

[30] H. Lee and Y. Park. The Generalization of Clement’s Theorem on Pairs of
Primes. Journal of Applied Mathematics & Informatics, 27(1–2):89–96, 2009.

[31] D. J. Newman. Simple Analytic Proof of the Prime Number Theorem. The
American Mathematical Monthly, 87(9):693–696, 1980.

[32] T. R. Nicely. Pentium FDIV Flaw. http://www.trnicely.net/#PENT.

[33] C. S. Ogilvy and J. T. Anderson. Excursions in number theory. Dover Books
Explaining Science Series. Dover Publications, 1988.

[34] P. Pritchard. A Sublinear Additive Sieve for Finding Prime Numbers. Com-
mun. ACM, 24:18–23, January 1981.

[35] L. Schnirelmann. Über additive Eigenschaften von Zahlen. Mathematische
Annalen, 107:649–690, 1933. 10.1007/BF01448914.

[36] I.S.A. Sergusov. On the problem of prime twins. Jaroslav. Gos. Ped. Inst.
Ucen. Zap., 82:85–86, 1971.

[37] J. Sorenson. Trading Time for Space in Prime Number Sieves. In Proceedings
of the Third International Algorithmic Number Theory Symposium (ANTS III,
pages 179–195, 1998.

[38] J. Sorenson. The Pseudosquares Prime Sieve. In ANTS, pages 193–207, 2006.

[39] W. A. Stein et al. Sage Mathematics Software (Version 4.7.2). The Sage Devel-
opment Team, 2011. http://www.sagemath.org.

[40] G. Tenenbaum. Introduction to Analytic and Probabilistic Number Theory.
Cambridge Studies in Advanced Mathematics. Cambridge University Press,
1995.

[41] S. Y. Yan. Number theory for computing. Springer, 2002.

[42] D. Zagier. A One-Sentence Proof That Every Prime p ≡ 1 (mod 4) Is a Sum of
Two Squares. The American Mathematical Monthly, 97:144, February 1990.

69

http://www.trnicely.net/#PENT
http://www.sagemath.org


1

© 2011 Tomasz Buchert
Adam Mickiewicz University in Poznań
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