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Chapter 1

Introduction

1.1 Motivation and purpose

The evaluation of algorithms and applications for large-scale distributed platforms such as

grids, cloud computing infrastructures, or peer-to-peer systems is a very challenging task.

First, there is no general solution used to perform the evaluation on distributed systems. Usu-

ally the experimentation middleware is prepared for each evaluation independently, making

it useful only for this type of the experiment. Not only is it tedious and time-consuming to do,

but also raises some questions about the correctness of the evaluation. It is generally agreed

that it is safer to use existing, mature frameworks instead of handcrafted solutions. Addition-

ally, as has been showed in the case of BitTorrent experiments [ZIP+10], it is not obvious what

methodology of the experiments should be, as, confusingly, it itself may bias the results. Also

the lack of knowledge of the global state and the impossibility of a complete synchronization

of timers, both immanent to distributed systems, pose a big problem to the experimental sci-

entist, as most of the time the precise result cannot be obtained. As a result, the way the data

is collected during the experiment may significantly influence the final result.

Secondly, it is uneasy to have a fine-grained control over the whole platform because of

its distributed character. For the same reason, this type of experiments are much more prone

to errors during the evaluation than in the case of centralized ones. This is of course a result

of the much higher chances of experiencing an error when working with numerous, possibly

counted in thousands, machines. In such configurations even a seemingly low-probability

event may occur with a very high probability. Moreover, even if the control over the experi-

ment is given, it is generally impossible to control the parameters of the platform. The homo-

geneous platforms, e.g. clusters and some grids, offer hardware of one type. This has many

advantages of course, but some disadvantages as well. Because in fact all systems are to some

extent heterogeneous (as a result of random events, multiuser work, etc.), the evaluation may

yield results which are not general enough, or simply wrong. For example, because of the

uniform nature of the platform, a critical deadlock situation may be not observed, but will

be revealed in a production system. As a result, the ability to control the parameters of the

platform could give much more general results and, probably even more importantly, more

reproducible ones. Since reproducibility of the experiments is crucial in any kind of experi-

mental science, this problem is particularly important also in the computer science.

1



1.2. Scope of the thesis 2

Different approaches to the evaluation are in widespread use [GJQ09]: simulation (where

the target is modeled, and evaluated against a model of the platform), but also in-situ ex-

periments (where a real application is tested on a real environment, like PlanetLab [CCR+03]

or Grid’5000 [CCD+05]). A third intermediate approach, emulation, consists in executing the

real application on a platform that can be altered using special software or hardware, to be

able to reproduce desired experimental conditions.

It is often difficult to perform experiments in a real environment that suits the experi-

menter’s needs: the available infrastructure might not be large enough, nor have the required

characteristics regarding performance or reliability. Furthermore, modifying the experimental

conditions often requires administrative privileges which are rarely given to normal users of

experimental platforms. Therefore, in-situ experiments are often of relatively limited scope:

they tend to lack generalization and provide a single data point restricted to a given platform,

and should be repeated on other experimental platforms to provide more insight on the per-

formance of the application.

The use of emulators can alleviate this, by enabling the experimenter to change the per-

formance characteristics of a given platform. Since the same platform can be used for the

whole experiment, it is easy to deduce on the influence of the parameter that was modi-

fied. However, whereas many emulators (e.g MicroGrid [SLJ+00], Modelnet [VYW+02], Em-

ulab [WLS+02], Wrekavoc [CDGJ10]) have been developed over the years, they mostly focus

on network emulation: they provide network links with limited bandwidth or given latency,

complex topologies, etc.

Surprisingly, the question of the emulation of CPU speed and performance is rarely ad-

dressed by the existing emulators. This question is however crucial when evaluating dis-

tributed applications, i.e., to know how the application’s performance is related to the per-

formance of the CPU (in contrast to the communication network), or how the application

would perform when executed on clusters of heterogeneous machines.

Nowadays multi-core processors are becoming more and more ubiquitous. This gives ad-

ditional advantages – one may use them to emulate more machines with a single node, for

example. With the ability to control the frequency of each core it should be possible to create

a very complex and reproducible configuration of the evaluation environment, at least in the

terms of computing power. This, in turn, could be a powerful tool for a computer scientist,

allowing them to obtain the results which are more general and closer to the truth.

1.2 Scope of the thesis

In this thesis, the idea of the emulation of CPU performance in the context of multi-core

systems is discussed.

First, in Chapter 2 a precise definition of the problem is presented. Its importance is

discussed and related work given, outlining the current state of the knowledge. This serves as

an introductory material to the rest of the thesis.

In Chapter 3 the problem is investigated further. Existing approaches are explained thor-

oughly, followed by the description of the additional three methods proposed in this paper.

In the end the analysis is summarized.
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In Chapter 4, the implementation of the previous ideas is described. The organization

of the code, implementation decisions, problems encountered and other details are given,

serving as a technical background on the problem of CPU emulation.

Penultimate Chapter 5 extensively describes the evaluation of the methods: first with a

set of micro-benchmarks, then by using a real application to demonstrate their usefulness in

a more realistic setting.

The last chapter, Chapter 6, is a summary of the obtained results. Final conclusions are

drawn and future directions of research given, concluding the whole thesis.

1.3 Conventions

Throughout this work some consistent conventions were used.

Algorithms contained in this work are presented in terms of pseudocode, typeset using

algorithmic package. Each algorithm has a clear specification of its arguments. Output

arguments are not given in all cases, as some algorithms actually run forever. Hopefully, this

way of presentation is much more concise and clear than state diagrams, or snippets taken

directly from the source code.

However, in some chapters, mostly in Chapter 4, listings are presented. They may contain

shell commands (Bash), C or C++ source code fragments, or Python source code (version 2.6).

Some basic knowledge on syntax and semantics of these programming languages is needed

and a reader who lacks the knowledge is asked to consult numerous sources on these topics.

1.4 Acknowledgements

This work has been done mostly as a part of INRIA Internships Program 2010. INRIA was

also funding the research. The internship lasted from March 2010 till September 2010, i.e., six

months. The coauthors and supervisors of the work are Lucas Nussbaum

(Lucas.Nussbaum@loria.fr) and Jens Gustedt (Jens.Gustedt@loria.fr), who are mem-

bers of ALGORILLE (ALGOrithmes pour la gRILLE ) team (http://www.loria.fr/equipes/

algorille/). ALGORILLE team is a research group that focuses on tackling the algorithmic

issues for computing on the grid. Additionally, the team is responsible for the administration

of the Nancy site of Grid’5000 (see Section 5.3).

The research was summarized in publications and research reports:

• Accurate emulation of CPU performance – an article published at 8th International

Workshop on Algorithms, Models and Tools for Parallel Computing on Heterogeneous

Platforms HeteroPar’2010 [BNG10a],

• Methods for Emulation of Multi-Core CPU Performance – a research report to be pub-

lished soon [BNG10b].

The source code produces during the research is included with the thesis. However, its

license is not yet decided and should not be used without consulting with the authors.

http://www.loria.fr/equipes/algorille/
http://www.loria.fr/equipes/algorille/


Chapter 2

Basic definitions and problem

formulation

2.1 Basic definitions

In this section some basic definitions are stated, giving an important, formal basis for the rest

of this work. The terms defined here used throughout this thesis so in case of any doubt in

their meaning, this section should be consulted.

Let us first distinguish between homogeneity and heterogeneity. By homogeneous object

(e.g. network, computers) we understand that it consists of objects of the same type. For

example, a homogeneous network is a network where all links are of the same type: they have

the same bandwidth, latency and so on. On the other hand, a heterogeneous object may have

its parts of significantly different type. The most obvious example is of course Internet which

is heterogeneous in terms of each possible characteristic. The following properties are usually

used to decide on heterogeneity or homogeneity of systems:

• processor speed, architecture, cache hierarchy and sizes, etc.,

• memory size and speed,

• network bandwidth and latency,

• operating system.

Fully homogeneous systems of course do not exist, due to unavoidable randomness in com-

putation, communication and production of the hardware. This should be a primary reason,

as why to avoid evaluation on purely homogeneous platforms – they simply do not exist in re-

ality and results obtained with them can be questionable. Heterogeneity, on the other hand,

is much more difficult to work with, because it requires more general approaches, able to

cope with this kind of environment. For example, operating systems schedulers are not pre-

pared to work with heterogeneous configuration of processors, that is, processors of different

speed. These architectures are however becoming popular, one notable example being Cell

architecture used in PlayStation 3 consoles [CEL].

The computational power is aggregated at different levels of hierarchy. This is listed below,

with a short description, and with an increasing level of complexity:

4
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Internet

Grid

Grid

Cluster

Cluster

Node

Node

Processor

Processor

Physical core

Physical core

Logical core

Logical core

Logical core
Physical coreProcessorNode

Cluster
Grid

CPU Heterogeneity

Figure 2.1: Hierarchy of CPU heterogeneity.

• logical core – the smallest computing element exposed by the underlying hardware;

this does not have to be a physical core, thanks to the superscalar architecture (like

simultaneous multithreading) which allows to run multiple threads of execution on the

same core,

• physical core – physically independent (or almost independent) computing element of

the processor; it shares some parts of hardware with other cores (like cache at some

level) so that cannot run on its own, but, at least to some extent, can execute the code

independently without affecting remaining cores,

• processor (CPU) – a set of cores on a single chip; this work is concerned with the control

of heterogeneity at this level,

• computer or node – a machine with all necessary components to perform computa-

tion with processors, like RAM memory, motherboard; it may have multiple processors

thanks to symmetric multiprocessing architecture,

• cluster – a network of homogeneous nodes equipped with network cards; they form

together a homogeneous platform accessible via network,

• grid – a cluster of clusters, all connected through network; therefore it may be hetero-

geneous as each cluster may have different characteristic,

• Internet – a completely heterogeneous platform, in terms of all possible parameters.

It is easy to see that with the complexity of the platform, also its heterogeneity and dis-

tribution increases. This is presented also in Figure 2.1. In the Figure 2.2, on the other

hand, the architecture of dual Intel Xeon X5570 machine is presented, as shown by hwloc

tool [BCOM+10]. This machine has two processors (denoted as Socket in the figure), each

one with 4 cores, which share L3 cache. In that particular case there are no logical cores –

there is one PU inside every core. In fact, it is because the Intel HyperThreading is turned off.

Some definitions related to the emulation of CPU will also be of some use. Most of these

definitions are compatible with Linux operating system (and virtually with every Unix), be-

cause this is a platform used throughout this work.
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Machine
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L1 #5 (32KB)
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L1 #6 (32KB)

Core #6

PU #6

L2 #7 (256KB)

L1 #7 (32KB)

Core #7

PU #7

Figure 2.2: Architecture of a dual Intel Xeon X5570 machine.

• Thread (task) – the smallest executing entity in the operating system. It has an exclusive

stack and a set of registers. Sometimes, because this is a notion used in the kernel

sources and documentation, a term task will be used interchangeably.

• Process – a group of threads which share some attributes and resources. This set of

attributes is usually defined by a particular operating system, or threading library. For

example, POSIX.1 requires that threads share, among other attributes [The04]:

– heap and data space,

– process ID,

– owner,

– file descriptors,

– current working directory.

• CPU time – a time during which a given process (or task) was scheduled on any of

the processors (or cores) (usually denoted as user time) or the kernel was doing some
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CPU work on the behalf of it (system time). This resonates with the definition used by

some Unix utilities (like time), or inside the Linux kernel itself. It always monotonously

increases, but does not have to be the same as the real time. In fact, it is always less

or equal to the real time, at least in the case of a single task process. Actually, when a

CPU-intensive, multithreaded process is executed on multi-core machine, its CPU time

may pass by faster than its real time! This is due to the fact that every thread may run

concurrently, executing multiple times more CPU cycles in the same period of time.

The difference between process CPU time and thread CPU time must be stressed here.

Usually the CPU time of a process is understood as a sum of all CPU times of its threads.

This is true for the above example, and will be true in this work.

• average CPU usage of a process/thread – a ratio of a process CPU time divided by the

period of time when this CPU time was measured:

average CPU usage = CPU time of the process/thread during the period

the period of time
(2.1)

The definition of instant CPU usage, resembling a velocity (v(t )) defined as a derivative

of a distance (s(t ))

v(t ) = lim
∆t→0

s(t +∆t )

∆t
= s′(t )

is of no use here. CPU usage is not a continuous function, of course, and this kind of

limit does not exist. Anyway, it is possible to sample the timers in a very short intervals,

and computing this ratio as approximation to this limit. One must be aware that too

frequent requests of this information may largely influence that information, as retriev-

ing this information consumes some CPU power also. In some extreme cases this may

render the information completely useless, as in fact will be the case with CPU-Lim

method described in Section 3.2.2.

The important case of the average CPU usage, denoted simply as CPU usage will be the

following ratio:

CPU usage = total CPU time of the process/thread

lifetime of the process/thread
(2.2)

• node – a computer node that is going to host emulated environments. As only proces-

sor parameters will be concerned, it can be characterized by a maximum frequency of

each core ( fmax ) (which is a common parameter for all of them) and a number of cores

available (N ): (
fmax , N

)
(2.3)

For example, the node already presented in Figure 2.2 may be represented by

(2.93 GHz,8). It is important to note that, although the emulation of heterogeneous

CPU architectures is interesting on its own, this work does not cover emulation of sys-

tems with such CPU configurations. It means that whenever a node with multiple cores

is given, then all of them have the same maximum frequency. This is hardly a limita-

tion, because virtually all existing systems are of this type. This also makes the whole

definition of node correct, as fmax is well-defined now.
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0 1 2 3

Virtual node

Figure 2.3: A visual representation of a virtual node
(
0.3,

{
0,2,3

})
based on a node with fmax =

3 GHz.

• emulated frequency – a frequency f of processor that is going to be emulated by means

of methods presented later. It may sound somehow cloudy for the time being, but will

be defined more precisely in problem formulation in Section 2.2.

• emulation ratio – a ratio of emulated frequency ( f ) and maximum frequency of the

CPU ( fmax ):

µ= f

fmax
(2.4)

• virtual node – a subset of processor’s cores that forms an independent scheduling group

of processes with a defined emulation ratio. Therefore, it may be represented by a pair

(
µ,C

)
(2.5)

where µ is, as before, emulation ratio, and C is a subset of cores of a given processor.

The convention will be to identify cores with their numbering exported by the Linux

kernel, i.e., the integer identifiers of logical cores starting from 0, up to N −1 where N

is a number of cores of the processor.

For example, to describe a virtual node V N spanning 3 cores (say, cores 0, 2 and 3) of 4

core machine whose emulation ratio is µ= 0.3, one can write:

V N = (
0.3,

{
0,2,3

})
This is presented in Figure 2.3. When the maximum frequency of a given node is known,

it is easy to calculate emulation frequency f using emulation ratio µ, and vice versa, by

means of Equation 2.4 only. For example, for the case in Figure 2.3, where fmax = 3 GHz,

one can compute

f =µ · fmax = 0.3 ·3 GHz = 900 MHz

2.2 Formulation of the problem

This work aims for a precise and robust solution for multi-core processor emulation problem,

i.e., to achieve the following goals:

1. Emulation of a different processor frequency than the one given by the manufacturer

of the hardware. The results obtained that way should be reproducible and mimic the
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0 1 2 3 4 5 6 7

VN 1 VN 2 VN 3 Virtual node 4

Figure 2.4: Multi-core CPU emulation using a 8-core machine decomposed into 4 virtual
nodes, using respectively 1, 1, 2 and 4 cores, allocated respectively 75%, 40%, 60% and 25% of
the physical cores’ performance.

ones obtained in a real environment as close as possible. Moreover, applications exe-

cuted in the emulated environment should not need modifications of their source code,

or any modifications whatsoever. Finally, they should be able to notice neither their ar-

tificial environment, nor interfere with it in any way.

2. Emulation of multiple machines inside a single machine. To do that, one must be able

to somehow separate the processes to different virtual nodes (see previous section), so

that they cannot influence each other.

3. A conjunction of the previous goals, i.e., being able to define multiple nodes inside a

single node, and control the CPU frequency inside each of them independently.

In principle, the authors would want to be able to create a configuration like the one given

in Figure 2.4. Each independent virtual node should constitute a logically independent entity,

without interference with remaining virtual node instances.

To formalize this in terms of scientific notation, we will define a CPU emulation request

P as a set of virtual nodes specifications, i.e., pairs representing the emulation ratio with a

number of cores to emulate in the virtual node. Using the following notation one can describe

the CPU emulation request with k different virtual nodes:

P = {v0, v1, v2, . . . , vk−1} (2.6)

where for i ∈ {0, . . . ,k −1}, vi is a pair

vi =
(
µi ,ni

)
(2.7)

A solution to the emulation request P (denoted S) is a method of emulating an architec-

ture defined in request P with allocations of machine’s cores to the virtual nodes. This can be

simply described as a set of virtual nodes with the same number of virtual nodes (here k):

S = {vn0, vn1, vn2, . . . , vnk−1} (2.8)

where each vni (for i ∈ {0, . . . ,k −1}) is a virtual node.
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For example, the situation in Figure 2.4 can be represented by:{
(0.75,1) , (0.6,2) , (0.4,1) , (0.25,4)

}
and solved by means of some emulation method (which here is assumed to be known) and

the following allocations:{
(0.75,{0}) , (0.4, {1}) , (0.6, {2,3}) , (0.25,{4,5,6,7})

}
Basically, what happens here is that the request for a number of cores is replaced by the

allocations to logical cores of the machine. Notice also, that the ordering of elements in P

and S is unimportant because they are sets. Moreover, in general the allocation of CPU cores

is not unique. Some methods may put some restrictions on that, however, as we will see.

Not every request can be satisfied, of course. Generally, it depends on:

1. CPU emulation ratio µ – it must be a positive number less equal or less than 1.

2. Number of processors in the system – the number of cores in the request must be equal

or smaller than the number of physical cores. Moreover, one core must be assigned

exclusively to one virtual node.

3. CPU architecture of the system – some approaches have to take the advanced configu-

ration of processors into the account (e.g. CPU-Freq and CPU-Gov).

Ideally, a valid method solving the CPU emulation problem associated with the request P

must possess the following properties:

1. Correctness – the partition to virtual nodes and their emulated speed must be respected

under any kind of the emulated work.

2. Accuracy – the speed of a processor perceived by emulated tasks must agree with the re-

quest precisely. It means that the execution speed for CPU-bound tasks is proportional

to the emulation ratio µ.

3. Stability – repeated executions of the same emulation request should always yield re-

sults close to each other. In other words, the emulation environment should be deter-

ministic and reproducible.

4. Scalability – the emulation method should work properly no matter how many tasks

are emulated. Methods that add only a constant overhead are preferable to ones that,

for example, add a constant overhead for each emulated task.

5. No intrusiveness – the emulation must work "out-of-the-box", i.e., no significant changes

to the emulated software and operating system need to be done. Also the emulation

must not interfere with a normal execution of programs.

6. Portability – the method should be portable to other operating systems, if possible.

Any method that strives to fulfill these conditions and consequently to emulate the architec-

ture described by the CPU emulation request P , is a potential solution to the CPU emulation

problem.
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2.3 Complexity of the problem

The problem of CPU emulation in multi-core systems is closely related to scheduling. A clev-

erly written scheduler could be an elegant way to emulate CPUs at different speeds. Later, it

will be also shown that some presented methods here are actually doing a kind of work usu-

ally attributed to the scheduler, or are fundamentally using some features of the scheduler of

the operating system. As scheduling problems are in general tremendously complicated, we

postulate that CPU emulation is, at least to some degree, also a complicated problem.

In the previous section, the most informal part of the definition of the solution to CPU

emulation problem was the emulation method. It seems that, to some extent, the CPU emu-

lation problem is a wicked problem [RW73]. The wicked problem can be defined descriptively

using the following conditions (they differ slightly from the original setting, but still carry the

main meaning):

1. You do not understand the problem until you have developed a solution.

2. Wicked problems have no stopping rule.

3. Solutions to wicked problems are neither right nor wrong. They are simply better or

worse.

4. Every wicked problem is essentially unique and novel.

5. Every solution to a wicked problem is a "one-shot operation".

6. Wicked problems have no given alternative solutions.

The first condition is true for the defined problem. Of course there is a general idea what

the problem is, i.e., what the multi-core CPU emulation consists in, but what are the precise,

formal requirements is not obvious at all. Gradually, it should be more and more clear what

the good method is, with quantitative results obtained in Chapter 5. For now, the reader must

rely on the high-level requirement given in the previous section - the method must create an

environment with a different perceived CPU performance, which imitates the real one with

the same CPU configuration.

Sadly, the second condition applies here as well. Even if the best method is tested under

numerous hypotheses, one cannot be completely sure that it will stand for the next experi-

ment. Possibly, under different conditions the method will perform poorly. Surprisingly, that

was the case for methods for CPU emulation presented in this work - after encouraging re-

sults obtained using some of them, their usefulness had to be refuted, after successive exper-

iments. One way to circumvent this problem is to agree at some point that the solution "is

good enough".

The truthfulness of the next condition will be observed in Chapter 5. It will be plain that

no method is perfect in all tested cases. Some of them perform exceedingly better in most of

the cases, yet in other scenarios may be far from perfect.

The fourth condition concerning novelty of the problem will be discussed in the next sec-

tion, and will clearly show that this problem was not considered yet, at least at such level of

generality.
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The penultimate condition states only that the solutions given are applicable in the lim-

ited sense. This will be true, unfortunately, as we will see that some methods depend on a

very specific features available only in some operating systems (in this case - Linux) or even

in concrete releases of them. This greatly limits the portability of solutions and shows that

the work may have to be redone if the previous solution no longer solves the problem.

One has to agree also with the last condition. It means that there may be no final solutions

to the CPU emulation problem, or there may be other approaches, still unexplored. At the

very end it is a matter of creativity to devise new approaches, and a matter of taste to judge

them, to decide which ones to pursue and exercise. There is definitely no obvious way to

explore that subject completely rigorously.

2.4 Related work and the current state of knowledge

Several technologies and techniques enable the execution of applications under a different

perceived or real CPU speed.

Dynamic frequency scaling (known as Intel SpeedStep, AMD PowerNow! on laptops, and

AMD Cool’n’Quiet on desktops and servers) is a hardware technique to adjust the frequency

of CPUs, mainly for power-saving purposes. The frequency may be changed automatically by

the operating system according to the current system load, or set manually by the user. For

example, Linux exposes a frequency scaling interface using its sysfs pseudo-filesystem, and

provides several governors that react differently to changes of system load. In most CPUs,

those technologies only provide a few frequency levels (in the order of 5), but some CPUs

provide a lot more (11 levels on Xeon X5570, ranging from 1.6 GHz to 2.93 GHz). Moreover,

the transition time between different frequency levels is non-zero, and as will be noted later

(Section 3.3.3) this will impose some restrictions and the applicability of this method.

CPU-Lim is a CPU limiter implemented in Wrekavoc [CDGJ10]. It is implemented com-

pletely in user-space, using a real-time process that monitors the CPU usage of programs

executed by a predefined user. If a program has too big share of CPU time, it is stopped using

the SIGSTOP signal. If, after some time, this share falls below the specified threshold, then the

process is resumed using the SIGCONT signal. The measure of CPU load of a given process

is approximated by CPU usage defined previously.

CPU-Lim has the advantages of being simple and portable to most POSIX systems. How-

ever, it has several drawbacks, described in much detail in Section 3.2.2.

KRASH [PH10] is a CPU load injection tool. It is capable of recording and generating

reproducible system load on computing nodes. It is not a CPU speed degradation method

per se, but similar ideas have been used to design one of the methods presented later in this

paper, i.e., Fracas.

Using special features and properties of the Linux kernel to manage groups of processes,

a CPU-bound process is created on every CPU core and assigned a desired portion of CPU

time by setting its available CPU share.

Although there are many virtualization technologies available, due to their focus on per-

formance none of them offer any way to emulate lower CPU speed: they only allow to restrict
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a virtual machine to a subset of CPU cores, which is not sufficient for our purposes. It is also

possible to take an opposite approach, and modify the virtual machine hypervisor to change

its perception of time (time dilation), giving it the impression that the underlying hardware

runs faster or slower [GVV08].

Another approach is to emulate the whole computer architecture using the virtualization

technology, which is becoming more and more popular. The available virtualization products

(VirtualBox, VMWare products, Virtual PC) do not posses the ability to control the speed of

CPU inside the virtual machine. Actually, at least in the case of VirtualBox, they mimic the

physical processor of the host system, giving the guest operating system an impression that it

is available exclusively to it. Still, virtualization technology may be too artificial environment

as to yield results resonating with the real life experiments.

Bochs Emulator [BOC], which can be configured to perform a specific number of "em-

ulating instructions per second". However, according to Bochs’s documentation, that mea-

sure depends on the hosting operating system, the compiler configuration and the processor

speed. As Bochs is a fully emulated environment, this approach introduces performance im-

pact that is too high for our needs. Therefore, it is not covered in this work.

As a final remark, let us recall that CPU degradation can also be used used to run old

games on modern computers. Some ill-designed games, sensitive to the speed of the execu-

tion, are running simply too fast on current hardware and the player is unable to play. Burn-

ing of CPU cycles (which can be thought as a naive method of CPU emulation) is a common

way to solve (or rather work-around) that problem.



Chapter 3

Analysis of emulation methods

3.1 General approach

As we will see, methods of CPU emulation are varying in many different ways. Nevertheless,

some standard techniques can be distinguished. One can describe 4 basic approaches which

differ at a very fundamental level, but are not mutually exclusive:

• CPU burning,

• control over emulated processes,

• hardware assisted approach,

• scheduler assisted approach.

The first one, the most obvious approach and also the most naive one, consists in run-

ning an application that consumes a desired portion of the CPU, leaving the rest of it to the

emulated environment. Normally, this program runs a CPU intensive loop and sleeps peri-

odically. This alone will not be enough, because there is no certainty that the scheduler will

not preempt the application. The basic way to assure that is to use a realtime scheduling

class for CPU burner, as we will call it, so that the program will preempt any other processes

that are emulated, and will not be preempted itself. Another, more radical approach is to

burn the CPU at the kernel level, so that a direct control over the scheduling is available.

This gives much freedom, but raises questions about maintainability of the solution and it

is highly unlikely that this kind of patch would be included in the Linux kernel. Moreover,

control groups system in Linux kernel gives a userspace access to some parameters of Linux

scheduler, what makes patching of the kernel somehow redundant. This approach is used by

CPU-Burn, CPU-Hogs and Fracas methods.

The next approach consists in directly controlling the emulated processes. This can be

done by querying the current CPU usage of processes and deciding whether to stop or resume

them. The following interface, among others, can be used to manage the processes:

• POSIX signals,

• managing of scheduling priorities,

14
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Method CPU burning Process controlling Hardware assisted Scheduler assisted

CPU-Freq •
CPU-Lim •

CPU-Burn •
CPU-Hogs •

Fracas • •
CPU-Gov • •

Table 3.1: Summary of approaches.

• cgroup freezer subsystem (described thoroughly in Section 4.6.2).

This method is used by CPU-Lim method (using POSIX signals) and, to some extent, by CPU-

Gov method (using cgroup freezer).

The hardware approach is using features given by the underlying processor. The method

uses ability of some processors to control their own execution speed. Fortunately, this control

is exported by the Linux kernel and can be used directly by userspace programs. There are

some limitations to this method: it depends on the processor’s model and only a limited

set of possible frequency levels are permitted. The CPU-Freq method is using this approach

directly, and CPU-Gov is an effort to circumvent some of its limitations.

Finally, the scheduler assisted approach is leveraging some advanced features of Linux

scheduler. It is possible, for example, to control CPU affinity of processes or their CPU time

share, on a very high level, even higher than the scheduler itself. In the case of this work, the

cgroup interface is significantly used by all presented methods. However, the Fracas method

is using it even more fundamentally.

In Table 3.1 a high-level summary of approaches used by the methods is given.

In the following sections 6 methods will be presented. With a sole exception of CPU-

Burn, which is described here only for the completeness of discourse, all of them share basic

ideas of CPU emulation and, as will be presented in Chapter 4, also a bigger part of their im-

plementation. All these algorithms operate on a single virtual node defined in the system.

Nevertheless, they can be run concurrently (with some minor exceptions, described in Chap-

ter 4) and therefore nothing is lost when one is considering them in the case of a single virtual

node. This high-level meta-algorithm for CPU emulation is presented as Algorithm 3.1.

Require: P = {
(µ0,n0), . . . , (µk−1,nk−1)

}
- CPU emulation request

Require: M(µ,C ) - emulation method
1: S ←;
2: for all (µi ,ni ) ∈ P do
3: create a virtual node vni with ni cores
4: S ← S ∪ {vni }
5: end for
6: for all (µi ,Ci ) ∈ S do
7: run method M(µi ,Ci )
8: end for

Algorithm 3.1: CPU emulation meta-algorithm.
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The abstract method M(µ,C ) in this algorithm is parametrized by two parameters: the

emulation ratio (µ) and a subset of cores where the emulation must be performed (C ). In

some methods additional parameters may be needed, but that was omitted for the sake of

brevity.

3.2 Existing methods

3.2.1 CPU-Freq

The first method is relaying on the hardware features offered by the processors itself. Dy-

namic frequency scaling can be used for power-saving purposes, and this was a primary rea-

son to develop this feature by the manufacturers. Algorithm 3.2 presents the general idea.

Require: (µ,C ) - virtual node
1: f ←µ · fmax {compute the emulation frequency}
2: for all c ∈C do
3: switch governor of core c to userspace
4: set a frequency of the core c to f
5: end for
6: loop
7: sleep
8: end loop

Algorithm 3.2: CPU-Freq algorithm.

CPU-Freq has the advantage of not causing overhead, since it is done in hardware. For the

same reason it is very accurate in its results. It is also completely transparent : applications

cannot determine whether they are running under CPU speed degradation unless they read

the operating system settings. Moreover, the quality of this method does not depend on the

number of processes emulated, because it does not deal with processes directly. This provides

unmatchable scalability compared to other methods.

There are a few cases where this algorithm may fail. First, the emulated frequency ( f )

must be a value that is supported by the processor. Usually, there are around ten levels of

frequency scaling available, but it is equally possible to have no other possibilities apart from

the maximum frequency of the processor. This is a serious limitation of this method, as one

cannot emulate a continuous range of frequencies, which might not be sufficient for some

experiments.

Second, the frequency of different cores is not completely unrelated. In fact, when some

cores share parts of the processor’s hardware (e.g., cache), then their frequency must be kept

at the same level. This is a drawback that can greatly limit the application of the method.

At least, this information can be retrieved from the Linux kernel by means of sysfs filesys-

tem. However, it seems that Linux exports wrong information as shown in Section 4.7.3.

In Figure 2.2 an architecture of typical processor configuration is presented. As some

cores share cache at some level, it will be not possible to change their speed independently,

because a simultaneous access to the cache requires a some kind of synchronization. For ex-
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ample, the cores identified by numbers 0 and 3 must run at the same speed, because they

share L3 cache.

Another disadvantage is that this method relies on the frequencies advertised by the CPU.

On some AMD CPUs, some advertised frequencies were experimentally determined to be

rounded values of the real frequency (the performance was not growing linearly with the fre-

quency). It would be possible to work-around this issue by adding a calibration phase where

the performance offered by each advertised frequency would be measured.

Advantages:

• very high accuracy,

• no additional overhead when set up,

• transparent,

• scalable with number of processes.

Disadvantages:

• limited to the available frequency levels,

• applicability depends on the internal architecture of the processor,

• may be biased by hardware implementation.

3.2.2 CPU-Lim

CPU-Lim polls the /proc filesystem with a high frequency to measure CPU usage and to

detect new processes created by the user. If the CPU usage of the given process is higher

than the emulation ratio (see Section 2.1), then the process is stopped by sending SIGSTOP

signal to it. And vice versa – when the CPU usage drops below the threshold then the process

is resumed by sending SIGCONT signal. The specification of the algorithm is presented in

Algorithm 3.3. An example of the algorithm work is pictured in Figure 3.1. As can be seen,

a CPU-intensive process will be stopped and resumed from time to time, depending on its

average CPU usage.

This method is easily portable to virtually any POSIX compatible operating system, which

offers a way to retrieve information about processes. It is also quite simple and intuitive

method, but there are numerous problems that this method suffers from.

The first negative observation is that this method introduces a high overhead in the case

of a large number of running processes. In fact, this overhead can be as high as it will in-

fluence the CPU usage of the processes which are running in the emulated environment.

Therefore, the polling interval also needs to be experimentally calibrated, so that the inter-

action is minimized. This results in a very poor scalability of that method, because the work

performed by the method grows linearly with the number of processes. In most cases it is

going to be unacceptable.

Additionally, a malicious program can detect the effects of the CPU degradation and in-

terfere with it by blocking the SIGCONT signal or by sending it to other processes.
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Require: (µ,C ) - virtual node
Require: τ - interval time

1: loop
2: sleep for τ seconds
3: for all processes in the virtual node do
4: usag e ← CPU usage of the process
5: if usag e <µ then
6: send SIGCONT signal to the process
7: end if
8: if usag e >µ then
9: send SIGSTOP signal to the process

10: end if
11: end for
12: end loop

Algorithm 3.3: CPU-Lim algorithm.

time

CPU usage

20%

40%

60%

80%

Figure 3.1: CPU-Lim emulating a CPU at 60% of its maximum speed. The circles represent
moments when SIGCONT signal is sent, the circles – moments when SIGSTOP signal is sent.

The CPU usage is computed locally and independently for every process. If four CPU-

bound processes in the system consisting of one core are supposed to get only 50% of its

nominal CPU speed, then every process will get 25% of the CPU time. Every process has

its CPU usage below a specified threshold, yet the total CPU usage is 100%, instead of the

expected 50%. Additionally, the method gives sleeping processes an unfair advantage over

CPU-bound processes because it does not make any distinction between sleeping time (e.g.

waiting for IO operation to finish) and time during which the process was deprived of the

CPU.

CPU-Lim works at the process level instead of the thread level: it completely ignores

cases where multiple threads might be running inside a single process for its CPU usage com-

putation. Therefore, one may expect problems in degrading CPU speed for multithreaded

programs.

Advantages:

• simple and intuitive (incorrectly),
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• portable.

Disadvantages:

• computational complexity of the method (linear with number of emulated processes),

• interference with normal work,

• problems with CPU usage measure,

• problems with multithreaded processes,

• required calibration of interval time.

3.2.3 CPU-Burn

A basic method to degrade the perceived CPU performance is to create a spinning process

that will use the CPU for the desired amount of time, before releasing it for the application.

This was already implemented in Wrekavoc [CDGJ10] as CPU-Burn method. One CPU burner

thread per core is created, and assigned to a specific core using scheduler affinity. They are

assigned the maximum realtime priority, so that they are always prioritized over other tasks

by the kernel. The CPU burners then alternatively spin and sleep for configurable amounts

of time (τ), leaving space for the other applications during the requested time intervals. The

high-level algorithm is presented in Algorithm 3.4.

Require: (µ,C ) - virtual node
Require: τ - interval time

1: for all c ∈C do
2: create a CPU burning thread t (µ,τ)
3: set the scheduling priority of t to realtime
4: set the CPU affinity of t to the core c only
5: end for
6: loop
7: sleep
8: end loop

Algorithm 3.4: CPU-Burn algorithm.

It remains to describe how each CPU burner thread works. It is easy to see, that the time

spent on CPU burning (T ) must be

T = 1−µ
µ

τ (3.1)

where µ is emulation ratio and τ is the sleeping interval. To prove that, notice that µ must

be equal to the ratio of CPU time available to the emulated processes (τ) and the time of the

whole cycle (i.e., τ+T ):
τ

T +τ = τ
1−µ
µ τ+τ

= µτ

(1−µ)τ+µτ =µ (3.2)

which is indeed the case. The algorithm of CPU-Burn method is presented in Algorithm 3.5.
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Require: µ - emulation ratio
Require: τ - interval time

1: T ← 1−µ
µ τ

2: loop
3: sleep for τ seconds
4: do CPU intensive work for T seconds
5: end loop

Algorithm 3.5: CPU-Burn algorithm (performed by each CPU burner).

This method is very simple, but will not work for multi-core case properly. The CPU burn-

ing threads will desynchronize in a matter of seconds and the scheduler will migrate emulated

processes to other cores as is shown in Figure 3.2. The remedy for that is provided by the next

method described, i.e., CPU-Hogs, which can be thought as a spiritual successor of CPU-

Burn. The CPU-Burn method was described here only for the sake of completeness and will

not be considered later.

Advantages:

• generalization of classical CPU burning approach,

• simple and portable.

Disadvantages:

• does not work properly in multi-core case,

• arbitrary interval time that need to be calibrated.

3.3 Proposed methods

3.3.1 Cpu-Hogs

The CPU-Hogs method generalizes the idea of CPU burning to the multi-core case and fixes

problems associated with CPU-Burn method. They are almost identical, but the crucial

changes made in the very algorithm and reimplementation of the whole program were nec-

essary to achieve a properly working CPU emulation tool.

As previously mentioned, creating one CPU burner per core is not enough in the multi-

core case. If the spinning and sleeping periods are not synchronized between all cores, the

user processes will migrate between cores and benefit from more CPU time than expected

(Figure 3.2). This happens in practice due to interrupts or system calls processing that will

desynchronize the threads. In CPU-Hogs, the spinning threads are therefore synchronized

using a POSIX thread barrier placed at the beginning of each sleeping period. The high-level

algorithm remains the same as Algorithm 3.4 and the description of CPU burning threads is

given in Algorithm 3.6.

This method is easily portable to other operating systems (and should be portable without

any code change to other POSIX systems). It may have problems scaling to a large number of

cores due to the need for frequent synchronization between cores.
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cores

time
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1

(1) without synchronization

cores

time

0

1

(2) with synchronization

spinning period

sleeping period

running process
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synchronization barrier

Figure 3.2: CPU-Hogs method using CPU burners to degrade CPU performance. Without syn-
chronization between the spinning threads, the user process will migrate between cores and
use more CPU time than allocated. This is solved in CPU-Hogs by using a synchronization
barrier: there is then no advantage for the user process to migrate between cores.

Require: µ - emulation ratio
Require: τ - interval time

1: T ← 1−µ
µ τ

2: loop
3: wait on barrier for all CPU burning threads
4: sleep for τ seconds
5: do CPU intensive work for T seconds
6: end loop

Algorithm 3.6: CPU-Hogs algorithm (performed by each CPU burner thread).

Advantages:

• generalization of classical CPU burning approach,

• simple and portable,

• works in multi-core scenario (as opposed to the CPU-Burn method)

Disadvantages:

• arbitrary interval time that need to be calibrated,

• theoretical scalability problems with a large number of cores (not observed).

3.3.2 Fracas

Whereas CPU-Lim is responsible for deciding when CPUs will be available for user processes,

another solution is to leave that decision to the system scheduler which is already in charge
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root cgroup

vn1 vn2 vn3 vn4

all all all all

bur n0 bur n1 bur n2 bur n3 bur n4 bur n5 bur n6 bur n7

process without

emulation (sys-

tem daemons, etc)

CPU burner
emulated process

Figure 3.3: Structure of cgroups in Fracas for the example from Figure 2.4. This also gives a
glimpse of internal structure of virtual nodes for all methods (see Chapter 4).

of scheduling all the applications on and off the CPUs. This is the idea behind Fracas, the

scheduler-assisted method for CPU performance emulation which shares many ideas with

Krash [PH10]. Fracas was already presented in [BNG10a], but gained support for emulating

several virtual nodes on a physical machine since then.

With Fracas, one CPU-intensive process is started on each core, as in CPU burning meth-

ods. However, instead of burning some portion of the CPU, they simply run endless loop,

occupying the CPU all the time. Their scheduling priorities are then carefully defined, so that

they run for the desired fraction of time. This is implemented using the Linux cgroups sub-

system, that provides mechanisms for aggregating or partitioning sets of processes or threads

into hierarchical groups. As shown on Figure 3.3, one cgroup per virtual node is first created.

Then, inside each of these cgroups, one cgroup named all is created to contain the emulated

user processes for the given virtual node. Finally, cgroups are created around each of the

CPU burner processes. Thanks to how the cgroups work, all descendants of the emulated

processes (e.g. created by forking) will be contained in the same cgroup.

Additionally, within each virtual node priorities of all (pral l ) cgroup and every burn

(prbur n) cgroup must be properly adjusted. The CPU time is distributed proportionally to

the priorities of cgroups, hence the values are set so that the following formula holds:

pral l

pral l +prbur n
=µ (3.3)

where µ is the emulation ratio for the given virtual node. In particular, when the virtual node

emulates a CPU half as fast as the physical CPU (µ = 0.5), then both the priorities will have

the same value.

This method uses Completely Fair Scheduler by Ingo Molnar which is a default scheduler

in the current Linux releases (2.6.36 at the time of writing). It was merged into kernel mainline

in version 2.6.23. Cpusets, which also play a crucial role, were introduced in version 2.6.12 of
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the Linux kernel. The O(1) scheduler (also by Ingo Molnar) used back then does not possess

the features required by Fracas [PH10].

The following CFS parameters have been experimentally verified to have impact on the

work of Fracas: latency (default kernel value: 5 ms) – targeted preemption latency for CPU-

bound tasks, and min_granularity (default kernel value: 1 ms) – minimal preemption gran-

ularity for CPU-bound tasks. The first one defines the time which is a maximum period of a

task being in a preempted state and the latter is a smallest quantum of CPU time given to the

task by the scheduler.

Ignoring rounding, the kernel formula for computing the period in which every running

task should be ran once is:

max(nr ·min_granularity, latency) (3.4)

where nr stands for a number of running tasks. Therefore, setting latency and

min_granularity to the lowest possible values (which is 0.1ms for both of them) will force

the scheduler to compute the smallest possible preemption periods and, as a result, the high-

est possible activity of the scheduler. Because of these observations the Fracas method

changes the settings of the scheduler to improve the results.

To conclude the discussion, the algorithm used by the Fracas method is presented as Al-

gorithm 3.7.

Require: (µ,C ) - virtual node
1: pral l ← 1 {arbitrary, positive constant}
2: prbur n ← pral l

µ −pral l {see Equation 3.3}
3: tune parameters of the scheduler
4: create all cgroup in (µ,C ) with priority pral l

5: move all emulated processes to all
6: for all c ∈C do
7: create bur nc cgroup in (µ,C ) with priority prbur n

8: run CPU burner in bur nc

9: end for
10: loop
11: sleep
12: end loop

Algorithm 3.7: Fracas algorithm.

It is worth noting that the implementation of Fracas is strongly related to the Linux ker-

nel’s internals: as the scheduling is offloaded to the kernel’s scheduler, subtle changes to the

system scheduler can severely affect the correctness of Fracas. Results presented in this paper

were obtained using Linux 2.6.33.2, but older kernel versions (for example, version 2.6.32.15)

exhibited a very different behavior.

This method relies on several recent Linux-specific features and interfaces and is not

portable to different operating systems. However, it has several advantages. First, it is com-

pletely transparent, since it works at the kernel level. Processes cannot notice the injected

load directly, nor interfere with it. Second, this approach is very scalable with the number of

controlled processes: no polling is involved, and there are no parameters to calibrate.
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Advantages:

• passive, i.e., requires no additional work when set up,

• transparent to the emulated processes,

• scalable.

Disadvantages:

• not portable,

• sensitive to the configuration of the scheduler,

• sensitive to subtle changes in the kernel.

3.3.3 CPU-Gov

Similarly to CPU-Freq method, CPU-Gov is a hardware-assisted approach. It may be consid-

ered a spiritual successor to CPU-Freq method, because it solves the main issue of CPU-Freq

method - the inability to emulate a continuous range of frequency values. Still, it inherits

some problems of its predecessor.

CPU-Gov leverages the hardware frequency scaling to provide emulation by switching be-

tween the two frequencies that are directly lower or equal ( fL) and higher or equal ( fH ) than

the requested emulated frequency ( f ). Precisely, when k frequency levels supported by the

kernel are f1 < f2 < . . . < fk and f falls between, say, fm and fm+1, then we have:

f1 < . . . < fm = fL ≤ f ≤ fH = fm+1 < . . . < fk

The time spent at the lower frequency (tL) and at the higher frequency (tH ) must satisfy the

following formula:

f = fL tL + fH tH

tL + tH
(3.5)

That way, the average CPU frequency is going to be the emulated frequency f . For example,

if the CPU provides the ability to run at 1.2 GHz and 2.4 GHz, and the desired emulated fre-

quency is 1.5 GHz, CPU-Gov will cause the CPU to run 75% of the time at 1.2 GHz, and 25%

of the time at 2.4 GHz. This is presented graphically in Figure 3.4. The length of switching

cycle, i.e., tL + tH is configurable and is denoted as τ.

As described, CPU-Gov can only emulate frequencies which are higher than the lowest

provided by hardware: a different solution is required to emulate frequencies that are lower

than the ones provided by frequency scaling. For those, a virtual zero frequency is created by

stopping all the processes in the virtual node. For this, the Linux cgroup freezer is used, which

has the advantage of stopping all tasks in the cgroup with a single operation. This is not a

completely atomic operation and, as a matter of a fact, two bugs in the Linux kernel were

found when working on the CPU-Gov method (see Section 4.7.2). Although this is a clever

and working solution to this problem, it changes dramatically the behavior of the method in

that case.
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Figure 3.4: An illustration of CPU-Gov frequency switching. The sum of areas of two rectan-
gles on the left are exactly the area of the rectangle on the right. That is, on the average CPU
speed is 1.5 GHz.

After this discussion it can be assumed that there is always 0 GHz frequency level avail-

able. To keep things simple, the special case described above is not treated in a special way

in the following following Algorithm 3.8. The computations are actually carried exactly the

same way as before, but there is a virtual f0 = 0 GHz frequency level available. This makes the

CPU-Gov method applicable even if there is no hardware support for frequency scaling pro-

vided. In that case, only two different levels are available: zero frequency and the maximum

frequency of the CPU.

Require: (µ,C ) - virtual node
Require: τ - interval time

1: f ←µ · fmax {compute the emulation frequency}
2: fL ← - scaling frequency directly smaller than f
3: fH ← - scaling frequency directly greater than f

4: tL ← fH− f
fH− fL

τ {see Equation 3.5}
5: tH ← τ− tL

6: for all c ∈C do
7: switch governor of core c to userspace
8: end for
9: loop

10: for all c ∈C do
11: set frequency of the core c to fL

12: end for
13: sleep for tL seconds
14: for all c ∈C do
15: set frequency of the core c to fH

16: end for
17: sleep for tH seconds
18: end loop

Algorithm 3.8: CPU-Gov algorithm.

When either tL = 0 or tH = 0, then the method actually works similarly to CPU-Freq

method. It simply means that emulated frequency is exactly represented by one frequency

level of the hardware frequency scaling.



3.3. Proposed methods 26

Core 0 Core 1

1 GHz 1 GHz

Core 2 Core 3

1.5 GHz 1.5 GHz

Figure 3.5: An impact of CPU architecture on the emulation. The maximum speed of cores is
2 GHz. Cores 0, 1 and cores 2, 3 must run at the same frequency respectively. They cannot be
used to create two virtual nodes at different speeds with 3 cores and a single core. They can
be used, on the other hand, to emulate 4 virtual nodes, but at a constant speed for related
cores (as presented).

This method has the advantage that, when the frequency is higher than the lowest fre-

quency provided by hardware frequency scaling, the user application is constantly running

on the processor. Hence, its CPU time will be correct, what, with the exception of the CPU-

Freq method, is not the case for the other methods.

However, this method suffers from the limitation mentioned in Section 3.2.1 about fre-

quency scaling: on some CPUs, it is not possible to change the frequency of each core inde-

pendently. The related cores might have to be switched together for the change to take effect,

due to the sharing of caches, for example. This is taken into account when allocating vir-

tual nodes on cores, but limits the possible configurations. For example, on quad-core CPUs,

it might not be even possible to create 2 virtual nodes with different emulated frequencies.

Nevertheless, when different virtual nodes are assigned the same emulation frequency, then

the method is able to combine them into a one group and they can be switched together, as

shown in Figure 3.5 .

Moreover, the transition between different frequency levels is not instant and some non-

zero time is needed for the processor to switch its circuits to a different operating frequency.

The information on that parameter of the processor can be retrieved from the Linux kernel

using /sys interface. Luckily, this is negligible as the observed values of latency are around

10 µs (Intel Xeon X5570 processor). It is a much smaller value than the switching period of

CPU-Gov itself and experiments show that this can be safely ignored.

Advantages:

• transparent to the emulated processes, when the emulated frequency is greater than

the lowest possible frequency level (CPU time of tasks is meaningful),

• scalable,

• high accuracy for specific values of emulated frequency (near hardware frequency scal-

ing levels).

Disadvantages:

• applicability and accuracy of the method depends on the internal architecture of the

processor and the quality of hardware implementation,
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• radically different behavior for small emulated frequencies.



Chapter 4

Design and implementation of

methods

4.1 Introduction

In the chapter to follow, important details of implementation are presented. By no means

this is going to be a complete description. Only important decisions, technical details and

problems encountered are to be presented.

To start with, the basic pieces of information concerning the work will be presented.

Then, the description of crucial parts of the project will be given, followed by a detailed dis-

course on the implementation of each method described in the previous chapter.

Finally, the problems met during the implementation will be presented, and the chapter

will be concluded with final remarks.

4.2 Organization of the work

The work on the project proceeded iteratively. First, the ideas how to emulate CPU perfor-

mance were devised and implemented. Some hypotheses about their behavior were postu-

lated, then experiments were carried out to validate them. This is a standard procedure in

the experimental science known as scientific method. This approach suggests also a devel-

opment model, which, with the properties of the CPU emulation problem (e.g., no precise

goals), already presented is Section 2.3, was chosen to be iterative and incremental.

Iterative and incremental development starts with the initial planning and finishes with

the deployment of the product. In between cyclic development cycles are carried out, each

consisting of analysis, implementation and testing phases [AJ97]. As the process is iterated, it

may not finish at deployment phase. Instead, a next iteration will be started to improve the

product.

The work started as a research on Wrekavoc tool [CDGJ10]. Soon, it was concluded that

CPU emulation part of this application lacks accuracy and robustness. The study of the

source code and basic experiments performed on methods implemented in it (CPU-Lim and

CPU-Burn) revealed that these methods lack robustness and accuracy.

28
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AnalysisInitial plan

Implementation

Deployment

Tests

Figure 4.1: Iterative and incremental development.

The first idea was to use the idea presented in KRASH [PH10], which is a tool to generate

reproducible system load. This is how Fracas method was conceived. As there was a constant

need for a set of tests to evaluate methods for CPU emulation, some basic benchmarks were

created or applied:

• CPU-bound work,

• IO-bound work,

• network-intensive work,

• memory speed (using STREAM benchmark),

• multiprocessing work,

• multithreading work.

Using this benchmark suite, it was easy to pinpoint the problems with existing methods and

fix them if possible.

To almost fully automate the process of validation, a special framework was implemented.

The basic idea was to create a concise description of the experiment and to be able to easily

rerun it if needed, or a new method needs validation. The result of that work was an inception

of Distest - a distributed testing framework. This greatly accelerated the most tedious part of

the development process and saved a lot of precious time.

The results of the work at this point of the project were published ([BNG10a]). The pa-

per presented extensive evaluation of the Fracas method compared with the legacy CPU-Lim

method, and the CPU-Freq method. Fracas was, of course, much better than the CPU-Lim

method, but still much was needed to be done.

The further explorations gave rise to next two methods: CPU-Hogs and CPU-Gov. Whereas

based on different principles, both showed their superiority over previous methods. Using the

same benchmarks they outperformed previous approaches in terms of accuracy and stability.

However, micro-benchmarks may lead to deceiving conclusions. To resolve this problem,

the last part of the work was concentrated on preparing the experiment that tests the em-

ulation of a more realistic environment. The so called large-scale experiment validates all
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methods when used with a real application emulation, run on multiple nodes of homoge-

neous cluster.

As said before, the work consisted of numerous iterations. For example, the implementa-

tion of the method was tested, what led to discovery of some subtle bugs. After the necessary

fixes, the same method was evaluated again, and so on. When the method was sufficiently

stable for some time, it was kept frozen. The reason behind was the need of using one and

the only version of source code base for publications. This was sometimes problematic, as

the developers had to work with a version of software known to contain bugs. They had to

be bypassed by means of some "dirty" tricks, sometimes. For example, the CPU-Gov method,

which unveiled a bug in the Linux kernel contained a special piece of code, whose only task

was to make sure, that the bug will not be triggered.

The source code underwent a few major refactorizations over the time. The biggest one

extracted a large piece of redundant code from all CPU emulation methods. The shared code

base is now available as CPU emulation library (cpuemu) and is use extensively by almost

every program. Actually, some methods, like CPU-Freq, became very short and trivial in their

implementation, replacing previous, hand-crafted and unmaintainable implementations. Us-

ing the same library, some useful tools were written, which replaced long sequences of time-

consuming operations.

4.3 Programming languages used

Most of the source code is written in Python programming language. The version used was

Python 2.5 with some features sometimes backported from Python 2.6. For example, CPU

emulation library is written in Python, as all the CPU emulation methods frontends are.

Also a lot of C or C++ code was written for crucial parts of the methods or to access rou-

tines not available directly from high-level programming languages like Python. When some

kind of threading was necessary, POSIX threads library was used.

Finally, the description file of the experiment for Distest framework, even though being a

well-formed Python file, can be thought as a separate language. A more elaborate description

of the construction and the rules is given in Section 4.6.3.

4.4 Tools and libraries used

The research was done on the Linux operating system. The distribution used was Ubuntu 9.10

(Karmic Koala). Git was used as a revision control system. It offers a distributed approach

without a requirement of connection to the Internet. In Subversion revision control system,

for example, one cannot commit changes without Internet connection. This feature was very

important when the work happens to be done without access to the Internet, or this access is

restricted (by rigorous firewall policy, for example).

To synchronize the state of data at different hosts involved with the experiments, rsync

tool was used.

For some high-precision, scientific computations mpmath library [MPM] was used. It is

a library for Python implementing arithmetic operations of arbitrary high precision.
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Figure 4.2: A GNOME desktop applet controlling frequency of a CPU.

4.5 Description of Linux subsystems

4.5.1 Frequency scaling in the Linux kernel

Linux operating system offers an interface to change the speed of processor. The number

of levels available to the user is architecture-specific. Normally, one needs root privileges to

control a frequency of the CPU, but this functionality can be also exposed to the normal user,

for example as a desktop applet as shown in Figure 4.2.

Nowadays many processors offer some kind of frequency scaling. This came naturally to

the domain of portable computers (as a way to save precious energy), but is also making its

way even to high performance computing (as a way to minimize the energy consumption and

heat). Processors of many vendors are supported in Linux, most importantly ones produced

by Intel and AMD. A complete list is available in the Linux kernel documentation.

The frequency does not have to be controlled manually (userspace governor). Instead the

user can delegate this job to a one of 4 governors:

• Performance – this governor uses always the highest possible frequency.

• Powersave – contrary to the previous governor, this one will use the lowest speed avail-

able.

• Ondemand – this governor polls regularly the system to see if the CPU usage increases

or decreases. Using that information a decision is made whether to change the fre-

quency.

• Conservative – this one works much like the previous one, however it is more conser-

vative in making the decisions. Consequently, the frequency is more stable.

Another tool that can be used to change CPU frequency is cpufreq-set (a part of cpufre-

qutils toolset). It allows to query the current speed, set a new speed and change the governor

of every core.

The low-level interface is located in /sys/devices/system/cpu/ path. It contains direc-

tories of the form cpu%d where "%d" stands for the core id. All functionality is provided by

either reading or writing files in the directory dedicated for a particular core.

An example of changing the CPU frequency is given on the following listing:
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root@host : / # cd / s y s / devices / system / cpu / cpu0

root@host : cpu0# l s

cache cpufreq cpuidle crash_notes node0 thermal_thrott le topology

root@host : cpu0# cd cpufreq

root@host : cpufreq# l s

affected_cpus scaling_available_governors

bios_l imit scaling_cur_freq

cpuinfo_cur_freq scal i ng_ dr iv e r

cpuinfo_max_freq scaling_governor

cpuinfo_min_freq scaling_max_freq

cpuinfo_transit ion_latency scaling_min_freq

related_cpus scaling_setspeed

scal ing_avai lable_frequencies s t a t s

cpuinfo_transit ion_latency scaling_governor

root@host : cpufreq# cat scal ing_avai l able_fre que ncies

2933000 2800000 2667000 2133000 2000000 1867000 1733000 1600000

root@host : cpufreq# echo userspace > scaling_governor

root@host : cpufreq# cat scal ing_cur_freq

2933000

root@host : cpufreq# echo 1733000 > scal ing_setspeed

Working with this subsystem manually is a very tedious task. Thus, to simplify the whole

process, CPU emulation library (described in Section 4.6.1) contains a Python wrapper around

these features.

As described before in Section 3.3.3, the speed of every core does not remain independent

from the others. A care must be taken to properly attribute the architecture of the processor

to work with CPU frequency scaling. This information can be retrieved also using the CPU

frequency scaling interface:

root@host : cpufreq# cat affected_cpus

0

root@host : cpufreq# cat related_cpus

0 2 4 6

The meaning of affected_cpus contents is that core 0 does not require software coordina-

tion of frequency with different cores. On the other hand, cores 0, 2, 4, 6 will need some sort

of frequency coordination, whether software or hardware, as this is a meaning of

related_cpus file. Generally, only the latter piece of information is important, as it is a su-

perset of the former one. Therefore, the output of previous listing means that cores labeled 0,

1, 2, 3 must be switched together, should they run at a different frequency.

The contents of cpuinfo_transition_latency file are important in the context of CPU-

Gov method as was described in Section 3.3.3. It contains the time it takes on this CPU to

switch between two frequencies in nanoseconds:

root@host : cpufreq# cat cpuinfo_transit ion_latency

10000

So, in this example the transition takes 10 µs. This should be taken into account when the

switching of the CPU is done frequently. Otherwise, the switching of the frequency too often

may result in performance loss.



4.5. Description of Linux subsystems 33

In some cases, even if all mentioned precautions are taken, the frequency of the CPU may

not switch. This can happen, for example, when the CPU itself will detect that its temperature

is too high and therefore dangerous. In that situation the operating voltage, and as a result -

frequency, can be scaled down involuntarily.

Another problem can be posed by details of CPU architectures. Certain versions of pro-

cessors of Nehalem family of Intel processors offer a very interesting feature called Intel Turbo

Boost. It allows cores of the processor to overclock themselves if the processor has not reached

its thermal and electrical limits yet. Normally, this functionality is giving a considerable im-

provement in the performance and as such its presence is positive. However, when pre-

dictable and deterministic behavior of the processor is concerned, it should not be used, as

it introduces too much variability that cannot be controlled by the user at all. For example,

this feature is turned off in grid systems, like Grid’5000.

4.5.2 Cgroups

Cgroups (Control groups) subsystem is an extension of the Linux scheduler. Before introduc-

tion of Completely Fair Scheduler [Jon] [CFS] in the release 2.6.23 of Linux kernel, a similar

feature named cpusets was already available. It is still kept in the kernel source code for com-

patibility reasons. Right now cpusets features are superseded by cgroups subsystem, where

cpusets are a single controller.

Basically, control groups can be used to aggregate a set of tasks in the system and apply

operations or policies on all of them simultaneously. For example, the aggregated tasks can

be:

• forced to run on a subset of cores or processors in the system (resource limiting),

• constrained to allocate only a portion of main memory (e.g., a subset of all NUMA

nodes in machine),

• allowed to use only some devices in the system,

• accounted together for the resource usage,

• assigned a certain classification of their packets (e.g., to create complex QoS scenarios),

• isolated so that different namespaces do not see each other,

• assigned a larger share of CPU, so that they prioritized over other processes,

• "frozen" together (see Section 4.5.2),

Each high-level functionality is grouped inside an entity called controller. There are many

controllers available: cpuset, freezer, memory, devices, cpuacct, among others. Various con-

trollers can be used together to obtain a complex control over the aggregated tasks. In this

work, however, only cpu, cpuset and freezer controllers are used.

The interface to Control groups is very intuitive and follows a standard Unix idea that

everything is represented by files. Hence, it will come as no surprise that to actually use it

one has to mount a proper filesystem:
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Root

System tasks
CPU: 20%

Memory: 20%
Network: 60%

Employees
CPU: 50%

Memory: 50%
Network: 30%

Professors
CPU: 90%

Memory: 80%
Network: 90%

Others
CPU: 10%

Memory: 20%
Network: 10%

Students
CPU: 30%

Memory: 30%
Network: 10%

Figure 4.3: An example of control groups hierarchy. Each control group has some limitations
on CPU, memory and network usage. The percentage is given relatively to the parent.

mkdir /tmp/cg

mount −t cgroup none /tmp/cg

By default, a few controllers are mounted together, by this is not standarized. In order

to use a concrete set of controllers, they must be specified as options to mount command,

separated by commas:

mkdir /tmp/cg

mount −t cgroup −ocpuset , devices none /tmp/cg

A new control group can be created by making a new subdirectory in the mount point.

The control group can be filled with tasks by writing their TIDs (task IDs) to a file tasks that

is always present in control group directory structure. To put the currently used shell in a

newly created control group called newgroup, one has to do following steps:

mkdir /tmp/cg/newgroup

echo $$ > /tmp/cg/newgroup/ tasks

Control groups are hierarchical entities. It means that they can be nested exactly as direc-

tories can, forming a tree, or equivalently an acyclic graph. Moreover, the control groups are

inherited by children of the processes contained in them. It means that if the shell of user is

moved to some control group, then every program executed in it will be in the same control

group also.

As an example of a scenario that could profit from control groups let us consider a large

university server is used by various users - students, employees, system tasks, etc. The em-

ployees could be further divided to professors and other employees (PhD students, post-

docs). The resource planning for this server could be arranged as in Figure 4.3.

Cpuset and Cpu controllers

Cpuset controller can be used to control the processor affinity of a group of processes. They

will be forced to run on the given subset of logical cores. There are many applications of this

feature, as it can be used to:
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• forbid migrations of applications whose execution performance is cache-sensitive and

suffers from migration between processors,

• give a dedicated processor to a critical application so that it will not be stalled in the

case of high load in the system (e.g., as a result of denial-of-service attack),

• force a more deterministic behavior of scheduling in the operating system by forcing

processes or threads to run on dedicated cores.

With cpu controller the possibilities are even more advanced. The administrator can

manually adjust the priorities of processes in a more fine-grained way than it is historically

done in Unix. In classical Unix systems the priority of a process, also known as niceness, is a

number between −20 and 20, by default set to 0. It describes how "nice" the process is to the

other processes in the system. Hence, the higher is the value, the lower is the scheduling pri-

ority of this process. With cpu controller the priority can be specified by a number between

2 and 216, so the control is much more accurate.

The priority is assigned to a control group, so the priority applies to a group of processes,

as is shown in Figure 4.3. Also, as every property in control group tree, it applies hierarchi-

cally, so the CPU share is split proportionally at the top level, then again at each lower level

and so on.

To see how it works let us mount control groups with both controllers and create two

subgroups (A and B):

mkdir /tmp/cg

mount −t cgroup −ocpuset , cpu none /tmp/cg

cd /tmp/cg

mkdir A

mkdir B

The directories A and B are populated with entries provided by the controllers. The most

important files are:

• tasks – as described before, it contains TIDs of tasks the control group consists of,

• cpuset.cpus – identifiers of cores that the control group is allowed to run on,

• cpuset.mems – identifiers of memory nodes (as understood in NUMA architecture) the

group is allowed to use,

• cpu.shares – a priority of the control group in relation to its siblings.

When a new control group is created with these controllers, the values of cpuset.cpus

and cpuset.mems files must be defined or the control group will not be able to contain any

task. The easiest way to do that is to copy the values from the parent control group:

cat /tmp/cg/ cpuset .mems > /tmp/cg/A/ cpuset .mems

cat /tmp/cg/ cpuset . cpus > /tmp/cg/A/ cpuset . cpus

The same steps should be done for the control group B.

Now, by writing to tasks file, the administrator can define the control groups. Finally, by

defining appropriate values of priority the CPU usage of the control groups can be managed.
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For example, to assign 70% of CPU time to the control group A and 30% of CPU time to the

control group B, these steps has to be executed:

echo 30 > /tmp/cg/A/cpu . shares

echo 70 > /tmp/cg/B/cpu . shares

Note that precise values are not important, but the ratio thereof. The priorities of the

groups A and B could be as well 21 and 49, with exactly the same result.

As the tasks are also kept in intermediate nodes, not only in the leafs of the hierarchy, the

question arises what the relation between the parent and its children is. Unfortunately, there

is no precise answer, because the exact behavior varies with the kernel version. Therefore,

the proper thing to do is to organize control groups so that processes are actually kept in the

leafs of the tree. That way to problem is mitigated.

Control groups are used by every method of CPU emulation presented in this work. The

general idea here is to keep emulated processes in a special group, separated from the rest

of the system. Among them the Fracas method (Section 3.3.2) is also using cpu controller

substantially to tune the relative priorities between emulated processes and CPU burners.

Freezer controller

Cgroup freezer is one of many controllers that can be used with cgroups. It allows to "freeze"

a group of tasks by using a special filesystem. This so called "freezing" process puts the subset

of processes in an uninterruptible sleep (D state in terms of Unix nomenclature). That way

processes cannot progress with their computation, becoming effectively stalled. This feature

was created as a tool for administrators to ease the control over the processes in the system.

Interestingly, this functionality is derived from the code responsible for suspend-to-disk fea-

ture (also known as hibernation) in Linux. For a detailed description of this subsystem please

consult [FRE].

In each non-root directory in cgroup freezer filesystem at least two files will be present:

tasks and freezer.state. One can create a group by using mkdir() syscall and populate

it with tasks by writing their TIDs (task identifiers) to the former file, just like in the original

cgroups. By writing a special value to the latter file one can control the state of all tasks in

this group. To mount the filesystem and create a group, one has to execute the following

commands (as root user):

mkdir /tmp/ free ze r

mount −t cgroup −o fr ee ze r none /tmp/ fre ez er

mkdir /tmp/ free ze r /group

cd /tmp/ free ze r /group

This will mount cgroup freezer at /tmp/freezer, create a cgroup named group whose

direct parent is a root cgroup, and will move the shell to its directory.

Consequently, to freeze tasks with TIDs 1780 and 1789 one can run following commands

inside group directory:

echo 1780 > tasks

echo 1789 > tasks

echo FROZEN > fr eez er . s t a t e
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After these commands the tasks will remain in uninterruptible state until the administra-

tor will "thaw" them:

echo THAWED > fre ez er . s t a t e

The status of a cgroup can be checked at any time by reading a file freezer.state.

When the task is in the uninterruptible state it is not considered by the system scheduler.

Normally, this state of a task is temporary, experienced during a sensitive operation which

cannot be interrupted for some technical reason, sometimes related to the hardware. As a

result the task cannot be killed by SIGKILL signal, even by the administrator. The task will

hold its acquired resources until it is finally unblocked. Cgroup freezer gives an ability to put

any task in that state for a desired period of time.

During this work, bugs with this part of the Linux kernel were found. They are described

in Section 4.7.2.

The control groups freezer is used extensively by CPU-Gov method. Normally, when the

emulated frequency can be emulated by means of frequency level exposed by the hardware,

it is not needed. If, on the other hand, the emulated frequency is lower than the lowest hard-

ware frequency level, then freezing is used to simulate zero frequency level.

4.6 Description of the implementation

In this section, the important details of the implementation are discussed.

4.6.1 CPU emulation library

At the beginning all methods of CPU emulation were separately written and maintained. As a

result a lot of the code was redundant and a lot of functionality duplicated in different places.

As a result, the code base was becoming unmaintainable.

Thus, at some point a decision was made to extract all common functionality needed by

the methods. This includes:

• managing the frequency of cores in the system,

• allocating CPU cores with and without considering their architectural relations,

• managing the control groups, their priorities and tasks,

• setting real-time priorities of the processes,

• managing execution of CPU emulation methods,

• keeping the user interface consistent.

The result of this refactoring is a Python library called cpuemu. All methods, or at least

their frontends, use this library to keep the implementation details of all methods consistent

with each other as much as possible. As a side affect, the previous implementation of the

methods became much shorter, in most cases not exceeding two pages of Python code.

The cpuemu library provides also three different core allocation strategies for virtual nodes:
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• SIMPLE – the cores are allocated in a greedy fashion to consecutive virtual nodes,

• RELATED – the cores belonging to different virtual nodes must not be related, meaning

that they have to switch their frequency simultaneously (see Section 4.5.1); this method

is not directly used by the methods but indirectly by the next strategy,

• GROUP RELATED – same as above but with the important exception: cores from dif-

ferent virtual nodes may be related, but then these virtual nodes must have the same

emulation frequency.

Require: n, f - a specification of virtual nodes; sequences of k elements
Assume: C - a set of available cores in the system
Ensure: A - a sequence of allocations of cores to virtual nodes

1: for i ← 0. . .k −1 do
2: if |C | < ni then
3: return "not enough CPUs"
4: end if
5: Ai ← any ni -element subset of C
6: C ←C − Ai

7: end for
8: return A

Algorithm 4.1: SIMPLE allocation algorithm.

These allocation algorithms are given as Algorithm 4.1, Algorithm 4.2 and Algorithm 4.3,

respectively. As the input, they all take the specification of virtual nodes given as two se-

quences: n0,n1, . . . ,nk−1 (size of the virtual node i ) and f0, f1, . . . , fk−1 (frequency of the vir-

tual node i ). If the algorithm succeeds, its result is a sequence Ai (for 0 ≤ i < k) so that each

Ai is a set containing cores allocated to the virtual node i . Of course the sets Ai must be

pairwise disjoint, that is, Ai ∩ A j = ; for i 6= j . Also for RELATED and GROUP RELATED al-

location strategies, information on the frequency related cores is needed. This is provided as

a set R = {R0, . . . ,Rk−1}, where each set Rc contains cores that have to switch the frequency

together with core c. We assume also that the size of each Rc is the same, as normally is the

case. Also note, that in general |R| 6= k, because if i ∈ R j , then Ri = R j .

4.6.2 Implementation of the methods

General information

As was pointed out before, all methods use cpuemu library and provide the same basic user

interface. For example to run the CPU-Gov method emulating two virtual nodes, each con-

sisting of two cores, and with speeds 2 GHz and 1 GHz respectively, the following command

must be executed as root:

./cpugov.py 2:1000000 2:2000000

The speed of a virtual node is given in kHz. The general format of virtual node speed

specification is as follows:
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Require: n, f - a specification of virtual nodes; sequences of k elements
Assume: R - a set of relations between cores in the system
Assume: si ze - size of each Rc set
Ensure: A - a sequence of allocations of cores to virtual nodes

1: for i ← 0. . .k −1 do
2: r ← ⌈ ni

si ze

⌉
{number of related groups needed}

3: if |R| < r then
4: return "not enough CPUs"
5: end if
6: P ← any r -element subset of R
7: R ← R −P
8: Ai ← any ni -element subset of

⋃
x∈P x {sum of all sets in P }

9: end for
10: return A

Algorithm 4.2: RELATED allocation algorithm.

Require: n, f - a specification of virtual nodes; sequences of k elements
Assume: R - relations between cores in the system
Ensure: A - a sequence of allocations of cores to virtual nodes

1: g ← a sequence of distinct values of fi

2: m ← a sequence of |F | values
3: for i ← 0. . . |F |−1 do
4: mi ←∑

f j=gi
n j {sum over such values of j such that f j = gi }

5: end for
6: B ← RELATED(m, g )
7: if B could not be computed then
8: return "not enough CPUs"
9: end if

10: for i ← 0. . .k −1 do
11: j ← index such that g j = fi

12: Ai ← any ni -element subset of B j

13: B j ← B j − Ai

14: end for
15: return A

Algorithm 4.3: GROUP RELATED allocation algorithm.

<number of cores in the virtual node>:<frequency specification>

A number of cores is a positive integer and frequency of the virtual node can be given in

two different ways:

• absolutely – by giving an exact value in kHz, just as was shown above; in this case the

frequency is just an integer,

• relatively – the value is an emulation ratio (see Equation 2.4) represented by a floating

point number between 0.0 and 1.0 with a letter "f" appended.
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For example, if the maximum frequency of the processor in the system is 4 GHz, then the

same virtual node configuration as before can be created by the following command:

./cpugov.py 2:0.25f 2:0.5f

If the reservation of cores can be fulfilled by the system and the method, then two control

groups named node0 and node1 will be created, The emulated processes can be moved to

this control group if they are going to run in the emulated environment. Then the method will

strive to change the processes’ perception of CPU speed according to specification of virtual

nodes.

In general, giving the reservations:

n0 : f0 n1 : f1 . . . nk−1 : fk−1

and they can be achieved on the given system and by the method used, then exactly k nodes

will be created named:

node0 node1 . . . nodek−1

and the processes contained in nodei will perceive the execution speed as if the frequency

would be fi .

Some methods can have some additional parameters to the command line. This can be

easily checked by running a method with "-h" option. These parameters will be also given in

the following sections.

However, each method accepts at least these parameters:

• -b (–no-clean-before) – do not clean control groups hierarchy before running

the method; it can be useful when the virtual nodes were created and populated with

tasks before,

• -a (–no-clean-after) – do not clean after running the method,

• -n (–no-nodes) – two options above combined,

• -t (–tune-scheduler) – tune the latency and granularity of the scheduler; it can improve

the quality of emulation in the case of the Fracas method (see Section 3.3.2), but no

influence was observed in the case of other methods.

The Python source code of the library is stored in cpuemu library.

CPU-Freq

This method is the simplest one. The cores that are allocated to different virtual nodes must

be able to switch their frequency independently, thus the allocation strategy GROUP RE-

LATED is used by CPU-Freq.

CPU-Freq can emulated only a small numbers of frequency levels. If it is not possible to

emulate the requested frequency then an error message is returned:
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root@host : cpufreq$ . / cpufreq . py 1 : 0 . 7 f

Cpufreq : True

Clean before : True

Clean a f t e r : True

Create nodes : True

Tune sched : False

Sett ing up the nodes . . .

Traceback ( most recent c a l l l a s t ) :

F i l e " . / cpufreq . py" , l i n e 31 , in <module>

setup_nodes ( cpuset )

F i l e " . / cpufreq . py" , l i n e 15 , in setup_nodes

a s s e r t freq in freqs , ’ This frequency cannot be emulated ! ’

AssertionError : This frequency cannot be emulated !

This method is written completely in Python. Its source code is located in cpufreq direc-

tory.

CPU-Lim

The implementation of CPU-Lim that was used during this research is a rewritten code of the

original version, which is a part of Wrekavoc tool. The original version had numerous bugs

and was not prepared for multi-core emulation of CPU performance. Hence, the decision was

made to rewrite it completely in C++. C++ was needed for high performance and low-level

operations. For example, CPU-Lim is using taskstats netlink interface to get a high precision

information about CPU time of an emulated task.

The implementation therefore is a hybrid one: both Python and C++ are used. Python is

used for frontend and spawns an instance of CPU-Lim for every virtual node created. The

code for this method is available in cpulim3 directory.

CPU-Hogs

The performance-critical part of the CPU-Hogs code is written in C. POSIX threads were used

to implement multithreading. Also, to properly handle SIGINT signal in this C program, a

very complex mechanism had to be devised. The reason for that is that threads of CPU-Hogs

are using a synchronization barrier so, to avoid deadlock, they must somehow finish the loop

together, without any thread reaching the barrier for the next time. This would result i a

deadlock. Moreover, POSIX mutexes cannot be used from signal handlers (the result of such

operation is undefined), so they will not help to solve the problem also.

The solution for that uses: two global integer variables, readers-writer lock and a local

variable for each thread. The global variable ctrlc is declared with volatile modifier and

set it to 1 in the signal handler:

s t a t i c v o l a t i l e int c t r l c = 0 ;

s t a t i c int f inished = 0 ;

void handler ( int num) {

c t r l c = 1 ;

}
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This will forbid all optimizations of accesses to this variable what is crucial here, as this vari-

able will be written without explicit synchronization. finished variable can be declared

without this modifier.

At the same time, the main CPU-Hogs process periodically (every 0.1 s) checks the value

of this variable and if it is set to 1, takes writing lock, sets finished to 1, releases the lock and

breaks the loop:

while ( 1 ) {

i f ( c t r l c ) {

p r i n t f ( "CTRL+C received . \ n" ) ;

w_lock ( ) ; / * begin writing * /

f inished = 1 ;

w_unlock ( ) ; / * stop writing * /

break ;

}

usleep (100000);

}

Finally, each CPU burning thread is running the following code:

int l o c a l _ f i n i s h = 0 ;

while ( 1 )

{

r_lock ( ) ; / * begin reading * /

pthread_barrier_wait (& b a r r i e r ) ;

l o c a l _ f i n i s h = finished ;

r_unlock ( ) ;

i f ( l o c a l _ f i n i s h ) {

break ;

}

( . . . more code . . . )

}

It is easy to see, that the threads hold reading lock when they leave the barrier concur-

rently. Therefore the state of finished variable will be the same for all of them. So either

they will all set local_finish to the same value and the next condition will be true for all

of them or false for all of them. Hence, they will break the loop only together. Eventually the

finished variable will be set (when SIGINT signal will be received) and then all the threads

will leave the loop.

The command line interface of CPU-Hogs accepts "-i" switch with parameter measured

in seconds. This sets sleeping period of CPU burners and can be used to tune the method.

The source code is located in cpuhog directory.

Fracas

The implementation of Fracas is written completely in Python using CPU emulation library.

The configuration of control groups outlined in Section 3.3.2 is only one implemented in Fra-

cas. Different topology can be set using "-m" switch with a parameter which is an identifi-
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cation number of a topology of control groups. In some cases they may give better results.

There as much as 8 different topologies implemented.

The source code of Fracas is in fracas directory.

CPU-Gov

CPU-Gov is completely written in Python. The future actions, i.e., changes to the frequency of

CPUs are stored on a priority queue implemented as a heap. The elements are conceptually

of the form (t ,c, f ) where:

• t - the time in the future when this event will happen,

• c - a set of cores whose frequency will change,

• f - the frequency to set when the event happens.

CPU-Gov periodically sleeps till the time the next event in the queue should be executed.

Then the event is taken from the queue the frequency of cores is adjusted properly. Finally,

the event is updated with new values of t and f and returned to the priority queue.

It is a very clean algorithm with few advantages:

• the main process runs only when needed, minimizing the load it generates,

• the drift of clock does not influence the computation,

• the method scales very well with the number of virtual nodes, as the heap operations

have complexity of O(log n).

A solution for "zero frequency" problem described in Section 4.6.2, resonating with cgroup

design is provided by Cgroup freezer. This subsystem was already described in Section 4.5.2.

Unfortunately, some problems were encountered as described in Section 4.7.2.

Similarly to the CPU-Hogs method, this method can also be adjusted with "-i" switch

which controls the length of a switching period.

The source code of this method is in cpugov directory.

4.6.3 Distributed testing framework

Distest is a framework used extensively to evaluate the methods presented in this paper. It

is possible to run many tests concurrently on the cluster, improving the speed of evaluation

by one order of magnitude. Also the reproducibility of the results is assured, since the exper-

iment is described inside a single file.

Distest consists of:

• a server – it holds the description of the whole experiment, distributes the jobs to clients,

manages (stores) the results and does a final processing of them,

• a client – a single node in the cluster that connects to the server, executes an instance

of experiment task, and returns the result.
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generate()

r2 = map(o2)r1 = map(o1) r3 = map(o3)

process([r1, r2, r3])
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2

o3
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r2 r3

Figure 4.4: Distest framework distributing the tasks. The work is distributed to the worker
nodes and finally collected again at the master node. The process function is executed only
when all results were obtained.

The processing can be stopped at any moment without fear that the already obtained

results will be lost. The framework will simply catch up with the first element not processed

yet.

The novelty of the approach lies in the specification of the experiment. A description is a

Python file that defines the following functions:

1. generate() – returns an iterable container of elements,

2. map(obj) – a single instances of generated elements are passed to this function; this

step is done concurrently on worker nodes,

3. process(objs) – all the results are passed together (as a list) to the final function which

should postprocess the results.

This is shown in Figure 4.4.

This is very much in the spirit of MapReduce method [DG04]. This solution is of course

less sophisticated, but also the requirements are different. In MapReduce method not only is

the map step executed in parallel, but also the reduce step (the equivalent of process func-

tion). In our case it is not needed - the results may be analyzed many times, from different

points of view, and the last step may have to be restarted many times.

The framework has also a special class (DataList) to perform operations on data, like fil-

tering, grouping and sorting. They are equivalents of WHERE, GROUP BY and ORDER BY

operations from SQL. Additionally, there are special functions to compute statistics of the

data (average value, confidence intervals) easily plot graphs of the data. The put together

makes running complex experiments a simple task. For example, the data from Chapter 5

was obtained using the following code:

from t e s t i n g import *
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from cpuemu import *
from u t i l s import *
from mining import *
from graphing import *

def generate ( ) :

emus = [ ’ fracas ’ , ’ fracas−tune ’ , ’ cpugov ’ , ’cpuhog ’ , ’ cpulim ’ ]

f s = drange ( 0 . 2 , 1 . 0 , 20) # frequency s t e p s

samples = range ( 5 ) # how many samples compute

t e s t s = l i s t (TESTS) # take ALL micro−benchmarks

cpus = [ 1 , 2 , 4 , 8 ] # cpus

return product ( t e s t s , emus, fs , samples , cpus ) # cartesian product

def map( obj ) :

test , emu, f , id , cpus = obj

e = Emulator (emu)

node = e . create_node ( cpus , ’ %.2 f f ’ % f )

t = Test ( t e s t ) . prepare ( )

e . move_task ( t . pid , node)

e . s t a r t ( ) ; v = t . run ( ) ; e . stop ( )

return ( test , emu, f , v , id , cpus )

def process ( objs ) :

data = DataList ( [ ’ t e s t ’ , ’ emulator ’ , ’ f ’ , ’ value ’ , ’ id ’ , ’ cpus ’ ] , objs )

data = average_results ( data , r e s u l t = ’ value ’ ,

id = ’ id ’ , error = ’ error ’ , count = 5)

data = data .map( lambda row : row . replace ( t e s t = ’%s−%s ’ % (row . cpus , row . t e s t ) ) )

data = data . s e l e c t ( [ ’ t e s t ’ , ’ emulator ’ , ’ f ’ , ’ value ’ , ’ error ’ ] )

d = data . groupone ( ’ t e s t ’ ) # every graph shows one t e s t

for test , r e s t in d . items ( ) :

s e r i e s = r e s t . groupone ( ’ emulator ’ )

dump_series_all ( ser ies , ’ data/%s ’ % t e s t )

The framework was created to help with the performing experiments, but has other uses.

For example, this simple example concurrently tests if the integers below 106 are primes:

def generate ( ) :

return range ( 1 , 10**6)

def map(n ) :

k = 1

while k*k <= n :

i f n % k == 0 :

return (n , False )

k += 1

return (n , True )

def process (nums ) :

for n , is_prime in nums:

i f is_prime :

print n

The source code of the framework is in distest directory.



4.7. Problems encountered 46

4.7 Problems encountered

4.7.1 Problems with Grid’5000

The majority of experiments concerned in this thesis was carried out on the Grid’5000 testbed

[G5K]. This is going to be described in much more details in the Section 5.3, but was also a

source of some problems. More concretely, 4 major problems were observed:

• SSH keys management and connection tunnelling,

• connectivity problems from outside of the workplace,

• synchronization of data between the sites,

• issues with NFS servers.

They will be described in that order.

The workflow with Grid’5000 usually consists of the following steps (see solid arrows in

Figure 4.5):

1. Connect to any site via its frontend.

2. Optionally connect to a different site from the current site.

3. Make reservations and wait until they are fulfilled.

4. Connect to the reserved nodes and run the experiment or computation.

The steps 1, 2 and 4 require making SSH connections to various hosts spread throughout

the Grid’5000 network. If the user account is not properly configured this will actually be

required to type the password manually 3 times every possible reservation. This would be to

time consuming and would forbid automated experiments or synchronization of files without

a password.

The generally known solution to the problem is the use of password-less logins. The user

creates a pair of cryptographic public and private keys (either RSA or DSA) locally and then

configures its account on the server side to allow authentication by means of public key cryp-

tography. The following listing presents how this can be achieved:

user@client :~ $ ssh−keygen

Generating public / private rsa key pair .

Enter f i l e in which to save the key ( /home/ user / . ssh / id_rsa ) :

Created directory ’/home/ user / . ssh ’ .

Enter passphrase (empty for no passphrase ) : <no passphrase >

Enter same passphrase again : <no passphrase>

Your i d e n t i f i c a t i o n has been saved in /home/ user / . ssh / id_rsa .

Your public key has been saved in /home/ user / . ssh / id_rsa . pub .

<additional information >

user@client :~ $ ssh−copy−id host

Password : <password>

Now t r y logging into the machine , with " ssh ’ host ’ " , and check in :
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Client machine Grid’5000 frontend Grid’5000 site

Machine in a cluster

ssh
frontend

ssh site

ssh node

ssh node.site

Figure 4.5: A simplified connection to Grid’5000.

. ssh / authorized_keys

to make sure we haven ’ t added extra keys that you weren ’ t expecting .

Here the client on host client is attempting to configure a password-less login on host

server. After this configuration they should be able to automatically connect without require-

ment of typing the plain text password.

This is unfortunately not enough in Grid’5000 scenario. One wants to connect automat-

ically to a chosen site or even a node in a set of reserved machines, without the need to

connect to intermediary servers. This is shown visually in Figure 4.5.

The solution to this problem is actually quite simple. In SSH configuration one can spec-

ify, by means of ProxyCommand setting, an alternative command used to connect to the re-

mote server. Normally, SSH client directly connects to the host using port 21. However, when

ProxyCommand is used, SSH client starts the program given in the configuration, which in

turn should connect to some SSH server. Instead of using a plain socket, input and output

streams of the program are used to communicate with the server. This can be used to make

very complicated configurations. For example, as the manual page of OpenSSH mentions,

one can use it to connect via HTTP proxy:

ProxyCommand / usr /bin/nc −X connect −x 192.0 .2 .0 :8080 %h %p

What happens here is that SSH is first using netcat tool to connect using HTTP proxy to

the host (for which %h is replaced) and then writes and reads from netcat’s input or output

respectively.

Now, the solution is straightforward - SSH client itself can be used as a proxy command

to connect to intermediary hosts. For example, when the connection to a site is to be es-

tablished, first the connection to the frontend is established and then netcat tool is used to

tunnel the connection forward to the site. Using some additional tuning (and password-less

logins, of course) this can be further simplified, so that

ssh parapide−4.rennes . g5k

will connect to the fourth node in parapide cluster at rennes site. The full configuration is

given by the following listing:

Host * . g5k

User <name of the user in Grid 5000>

ProxyCommand ssh g5k "nc −q 0 ‘basename %h . g5k ‘ %p"
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Host g5k

User <name of the user in Grid 5000>

Hostname acces . nancy . grid5000 . f r

We can see that connecting to any host with the alias ending with "g5k" will first establish

connection to the frontend (in this case, to Nancy’s frontend) and will run netcat to connect

to the final destination. This chain of connections can be arbitrary extended.

The next problem, closely related to the previous one, is about problems with the connec-

tivity when not in the laboratory where the research took place. The wireless network usually

used at home had a very rigoristic configuration - even outgoing SSH connections were for-

bidden. That was very annoying and forbade connecting to Grid’5000. Even worse, Grid’5000

was designed as a very hermetic network - it has a dedicated backbone network and, in prin-

ciple, connecting to it from the outside world is not supported, at least officially. However,

sometimes the experiments had to be run during the night, when there are more machines

available than usual. Thus it was crucial to devise a method to connect to Grid’5000 despite

all these problems.

The solution used is quite complicated. First, one has to forget about making outgo-

ing SSH connections because of the firewall, and it is not possible to change the ports of

Grid’5000 SSH servers, of course. As usual, the most common ports, like port 80 used by

HTTP, were not blocked. The idea was to use HTTP proxy server (listening on port 80) located

somewhere in the public Internet to forward the connection to Grid’5000, using one of its

frontends that are accessible publicly.

To achieve all that, an Apache HTTP server located in Poznań, Poland was preconfigured

to serve as a HTTP proxy. It was configured, for the sake of security, to only forward connec-

tions to itself. That was, however, enough to create a tunneled SSH connection to this ma-

chine. Later, using the same techniques as explained before the connection was forwarded in

few steps further to finally reach Grid’5000. As a reliable, yet unofficial, host used to access

Grid’5000 network, a frontend in Toulouse, France was used. Then, finally the connection

could be forwarded anywhere in Grid’5000.

Logically, the main tunnel has 3 subtunnels as is shown in Figure 4.6.

1. from Nancy to Poznań (public HTTP connection),

2. from Poznań to Toulouse (public SSH connection),

3. from Toulouse to Nancy (SSH connection in Grid’5000 network).

The full configuration of SSH client is given in the following listing (the hostnames and

usernames are concealed for security reasons):

Host poznan

User <username at server in Poland>

Hostname <hostname of the server >

ProxyCommand / usr /bin/ corkscrew <hostname of the server > 80 %h %p

Host * . g5k
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(1)

(2)

(3)

Toulouse

PoznanNancy

Figure 4.6: A chain of connections necessary to tunnel SSH connections from the restricted
network in Nancy, France back to Nancy site.

User <username of the Grid 5000 user >

ProxyCommand ssh g5k "nc −q 0 ‘basename %h . g5k ‘ %p"

Host g5k

User <username of the Grid 5000 user >

ProxyCommand ssh poznan "nc −o <Grid 5000 frontend at Toulouse> %p"

Using that configuration, connecting to Nancy’s site is as simple as typing:

ssh nancy . g5k

This solution works, but not without any problems associated. First, the latency of this

connection is very high. The round-trip time of a packet was measured and is about 250 ms,

much more than needed for the delay to be perceived. Second, the bandwidth was also very

much limited. The bottleneck was the host in Poland whose link to the Internet was only

1 Mb/s at that time. In reality the threshold was even lower, because of many intermediate

steps needed to pass the data. Sometimes, it posed a big problem, for example when the

results of the experiments had to be downloaded. Normally, the compressed file with them

had few tens of megabytes, so it could take a while to have them downloaded. It could be

expected since in total the tunnel has length of more than 3000 kilometers and consists of 3

steps. It is definitely quite a surprise how much work had to be done to establish a connection

to the computers being around 500 metres away from the place where the author was staying!

Even though, despite the limitations imposed by this solution, it allowed to work at

Grid’5000 transparently from different places. Because of many incompatible configurations,

some way of managing them had to be also devised. An SSH configuration management tool

was written in Bash and allowed easily switch between different SSH configurations if needed.
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The next problem associated with Grid’5000 was synchronization of data between all sites

in the grid, and also with the data at a machine used to develop. As usually, rsync tool is used

to achieve that. The process of synchronization consists in the following steps:

1. Initiate the process using the sync-all command. This will synchronize the state of

the data at Nancy’s site with the state at the current machine.

2. When synchronization is done, the process of synchronization with the rest of sites is

initiated. Actually, all sites are synchronized concurrently, achieving much better results

when synchronizing them in order.

The scripts were written mostly in Bash, and synchronization is done with rsync. Usually,

the synchronization of data in the whole grid takes few seconds. It is also a good idea to

mention how the synchronization is parallelized. In fact, it is done by the following script in

Bash:

SITES=$ ( cat ~/bin/ s i t e s )

echo Syncing with $SITES . . .

for s i t e in $SITES ; do

~/bin/ si te_rsync $ s i t e &

done

wait # wait f o r a l l rsync ’ s

echo Finished .

The list of sites is kept in sites file and site_rsync command synchronizes with the

given site. The trick here is to run all rsyncs in parallel. This substantially improves the time

needed to bring all the sites to a consistent state of data.

There were also some minor adjustments to the process, e.g. on every site there is a local

directory that is not synchronized and is supposed to contain site’s specific files.

The last problem encountered when working with Grid’5000 is about policy of NFS servers.

At Grid’5000 each user has its home directory mounted automatically at each side. Moreover,

the options nosuid and squash_root are used. It means that:

• SUID flag of files on the mounted volume is not respected, i.e., they will not be executed

as an owner of the executable file (nosuid).

• Root user cannot freely modify files on a mounted volume (squash_root).

What is more, the architecture allows the users to modify (or even delete) files of other

users of the platform. It suffices to mount the NFS volume without squash_root option.

Almost all experiments concerned in this thesis are executed as a root user (because of the

privileges required). On the other hand, these programs cannot write to the user’s directory.

To circumvent this problem, the approach to use SUID was proposed. It was unfortunately

also unsuccessful as SUID bit is not respected when NFS share is mounted. Another solution,

was to write the results to the directory not located on the NFS volume. For that purpose

/tmp can be used, but as it is local to every node, it requires an additional step to be made,

i.e., move the data to a permanent storage.



4.7. Problems encountered 51

In the end, when the process of making tests became in the bigger part automatic, thanks

to distributed framework written, the results ended up being sent through the network to the

arbitrary place where they could be stored.

4.7.2 Linux kernel bugs

Linux operating system was used during this work because of variety of reasons: its open

source character, rapid development, and required features. Unfortunately, during the im-

plementation and experiments two bugs were found, all of them related to cgroup system in

Linux. More precisely, they are race conditions which can be triggered when cgroup freezer

is used. A more abstract description of that interface was already given in Section 4.6.2 (CPU-

Gov). Let us just recall that this interface allows the administrator to freeze a subset of pro-

cesses by writing to a special file in the control group filesystem.

In fact, as described in Linux kernel source, cgroup can be seen in 3 different states:

• THAWED – default state, the group is thawed and all tasks run normally,

• FREEZING – the group is freezing, but at least one of the tasks is not completely frozen

yet,

• FROZEN – the group is frozen, i.e. all tasks are uninterruptibly sleeping.

Only some transitions are allowed as can be seen in Figure 4.7. Please note that tran-

sitions pictured as horizontal, solid arrows will only be executed when writing FROZEN to

freezer.state will not freeze all tasks immediately. Instead, the group will stay in a spe-

cial FREEZING state and its status will be lazily updated (upon read of freezer.state) to

FROZEN state, if at that time all tasks will be eventually frozen.

Moreover, one should not be able to move any task either from or to a group if that group

is not in THAWED state. This could lead to some forbidden configurations, like a frozen group

with no tasks inside, or tasks frozen outside their group.

The first bug encountered actually allowed the last situation. When the group was freez-

ing, i.e., FROZEN was written to freezer.state file, it was possible to move one of the freez-

ing tasks outside its original group. The process of freezing, however, was not stopped and

the task could enter uninterruptible sleep outside its group. The effect is permanent – the

task cannot be thawed and will occupy system resources until the system is restarted. A min-

imal pseudocode snippet to trigger this bug is presented on the following listing (assuming

that cgroup freezer is mounted at /cg):

pid = fork ( ) ;

while ( ! pid ) {

/ * i n f i n i t e loop f o r a child * /

}

mkdir ( " /cg/ freeze_zone " ) ; / * c r e a t e a group * /

write ( " /cg/ freeze_zone / tasks " , s t r ( pid ) ) ; / * move the child there * /

write ( " /cg/ freeze_zone / fr ee ze r . s t a t e " , "FROZEN" ) ; / * f r e e z e the group * /

write ( " /cg/ tasks " , s t r ( pid ) ) ; / * move the child outside * /
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THAWED FREEZING FROZEN
FROZEN (lazily)

THAWED

THAWED

FROZEN

Figure 4.7: Allowed cgroup freezer transitions – the vertical transitions are triggered only
when the initial freezing is not complete.

The last operation should fail, but instead it is successful, ultimately blocking process

identified by pid forever.

A solution is to forbid migration of tasks between groups that are not thawed. This kind

of behavior was later implemented as a patch to the Linux kernel and successfully accepted

by developers.

Nevertheless, that is not the end of the story and after some time another bug was found.

The buggy implementation allowed a transition FREEZING → THAWED without any explicit ac-

tion of the user. It was enough to read freezer.state file fast enough to force this transition,

but, as is shown in Figure 4.7, one has to write THAWED value to do it. The transition would be

fired when none of the tasks from this group would be frozen yet, leading the kernel to the

conclusion that it is actually thawed. The processes, however, would become frozen anyway.

Additionally, the kernel implementation used a somewhat relaxed notion of frozen group.

It was possible to see a group in FROZEN state, but some of the tasks could be still running.

There are many ways to trigger this buggy behavior, but this one is particularly short:

pid = fork ( ) ;

while ( ! pid ) {

/ * i n f i n i t e loop f o r a child * /

}

mkdir ( " /cg/ freeze_zone " ) ; / * c r e a t e a group * /

write ( " /cg/ freeze_zone / tasks " , s t r ( pid ) ) ; / * move the child there * /

write ( " /cg/ freeze_zone / fr ee ze r . s t a t e " , "FROZEN" ) ; / * f r e e z e the group * /

read ( " /cg/ freeze_zone / fr ee ze r . s t a t e " , buf , 1 0 ) ; / * read the s t a t e * /

In the last line, the kernel updates the state of the group and, assuming that the task

identified by pid is not frozen yet, it will be incorrectly deduced that the group is thawed.

Fortunately, this situation can be reversed without rebooting – it suffices to freeze the group

again and thaw it.

A final solution for that was to rework the code a little bit:
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Commit message Commit ID

fix can_attach() to pro-
hibit moving from/to freez-
ing/frozen cgroups

2d3cbf8bc852ac1bc3d098186143c5973f87b753

update_freezer_state() does in-
correct state transitions

0bdba580ab052a21e3eda2764ed22d9ee962392b

Table 4.1: Summary of the patches fixing discovered bugs.

• the state of the group can be changed lazily only from FREEZING state to FROZEN state,

• a more conservative definition of frozen task than before.

Again, a patch proposed by the authors was accepted by kernel developers. Table 4.1

summarizes the bugs found during the research. They should be released with the version

2.6.37 of the Linux kernel.

4.7.3 Retrieving CPU configuration

As presented previously it is important for some methods to adjust to the hardware configu-

ration of the processors in the machine. Specifically, the CPU-Gov and CPU-Freq methods,

may profit from this information to aptly group virtual nodes that can switch their frequency

at the same time. That was already presented in Section 3.3.3.

It is therefore important to somehow gain the knowledge about the relations between pro-

cessors in the system. The first obvious way to do that is to use interface provided by CPU fre-

quency scaling subsystem as described in Section 4.5.1. The contents of files related_cpus

and affected_cpus should, if one believes in the documentation of the Linux kernel, con-

tain all necessary information. Unfortunately, to authors’ knowledge this information is in-

correct.

This observation was made during one of the tests. The results obtained by the CPU-

Gov method on one of the clusters were suspicious, because they were far away from the

expected behavior. Comparing this piece of information to the architecture returned by the

hwloc tool [BCOM+10], confusing inconsistency was found. For example, the following listing

shows how the Linux kernel returns the information on the CPU architecture of adonis cluster

node located in Grenoble, France:

cd / sys / devices /system/cpu/cpu0/ cpufreq /

cat related_cpus

0 2 3 4

On the other hand, the CPU architecture returned by hwloc is presented in Figure 4.8.

Clearly, these two pieces of information cannot be both correct – there is no obvious reason

why the frequency of the core 0 should be in any relation to the cores 2, 3, and 4, which are

located in a different socket.

Therefore the problem was reduced to finding out which source of information is correct

(if any): the one returned by the Linux kernel or the one given by hwloc tool. The experiment

to verify this claims consisted of the following steps:
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Figure 4.8: Architecture of a dual Intel Xeon X5520 machine (Adonis cluster).

1. Set all cores to the maximum frequency.

2. Run a CPU-intensive benchmark (see Section 5.2.1) and note the result.

3. Take any set of related cores (according to the tested source of information) and set the

cores’ frequency to the minimum value.

4. Run the benchmark again on any of cores in the previous set and again note the result.

5. The second result should be proportional to the ratio of maximum and minimum fre-

quency.

The conclusion after necessary tests was that the information given by the Linux kernel is

incorrect or, at least, uses a numbering scheme of the cores that is incompatible with other

systems in the system. This actually seems to be a next bug that was discovered during the

research described in this work.
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To circumvent this problem, a special program cores was written in C++ that uses hwloc

library. It is used to obtain a partition of node’s cores to sets of related cores and the algorithm

is presented as Algorithm 4.4.

Require: C - set of all cores
Require: S - set of all sockets

1: cores[] - cores located on a given socket
2: for s ∈ S do
3: cores[s] ←;
4: end for
5: for c ∈C do
6: s ← socket of core c
7: cores[s] ← cores[s] ∪ {c}
8: end for
9: for s ∈ S do

10: for all c ∈ cores[s] do
11: print c
12: end for
13: print newline
14: end for

Algorithm 4.4: Algorithm to discover and output frequency related cores.

The output from this program is then parsed by cpuemul library and influences the allo-

cation of cores to virtual nodes.



Chapter 5

Validation

In the following chapter the methods presented before are going to be evaluated. First, the

general idea how to do such a validation will be outlined. Then the benchmarks used during

the validation will be described. Next, a description of the so called large-scale experiment

will be given. Finally the results obtained will presented graphically, explained and conclu-

sions will be drawn.

5.1 Methodology

One of standard methods to evaluate an algorithm, a distributed system, or any solution

for a certain problem for that matter is to put it under a set of specific tests called micro-

benchmarks. They are devised and run to test the solution for a very specific and hermetic

conditions that focus only on one characteristic of the system. They are easy to design, easy

to understand and the expected output from their execution is usually easy to deduce before-

hand. A valid solution should necessarily pass them, so they serve as necessary conditions for

the validity of the method, or simply as unit tests known from software engineering. Notwith-

standing, micro-benchmarks are simulating unrealistic situations, detached from the normal

scenarios, and even satisfactory results obtained by means of micro-benchmarks will not im-

plicate that they will behave as good in the general case. Being aware of all advantages and

drawbacks of that approach, a set of micro-benchmarks was used in this work to validate the

presented methods.

The benchmarks test how the CPU emulation affects the following types of work:

• CPU-intensive work – represented for example by scientific computation,

• IO-intensive work – represented for example by network work, or by a typical interac-

tion of a human with the computer,

• both CPU and IO intensive work – almost every standard type of the work,

• multitasking work – inherent to multitasking operating systems and becoming much

more common nowadays with the advent of processors with multiple cores.

Also the memory speed is tested in CPU-emulated system.

56
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5.2 Micro-benchmarks

5.2.1 Detailed description

All benchmarks were written in C language to mitigate the results of randomness of the ex-

ecution as much as possible. The high-level languages with automatic garbage and complex

execution framework (e.g. Java) are prone to this kind of measurement bias. Moreover, some-

times low-level functionality was necessary and accessing it would not be possible directly if

C language has not been used.

All methods (apart from STREAM which is used as-it-is) are designed to calibrate them-

selves at the beginning of the execution using system timer. That was motivated by the prob-

lem of accuracy of clocks of the system. If the number of computation cycles would be hard-

coded and the processor under the test would be too fast then the problems with dividing

by a small floating point number (time of the computation) could arise. Therefore, every

method at the beginning of the computation runs a calibration loop and adjusts the number

of computation cycles accordingly.

Require: CODE - a fragment of code to calibrate
Require: t i me - a time the code is calibrated to

1: loops ← 1
2: span ← 0
3: while span < 0.1 s do
4: l oops ← loops ·2
5: st ar t ← now()
6: for i ← 1. . . loops do
7: run CODE
8: end for
9: end ← now()

10: span ← end − st ar t
11: end while
12: return

⌊
loops
span ·T

⌋
+1

Algorithm 5.1: Algorithm to calibrate a fragment of code.

More technically, the calibration and measurement routines are implemented as prepro-

cessor macros:

• CALIBRATE – returns a number of computation cycles needed to be executed to run

approximately for a given time. The given code is executed in number of loops that is

rising exponentially (as powers of 2) and when at some point the overall execution time

is higher than 0.1 s, then the approximation to the time required to run the benchmark

for the requested time is computed and returned. This is presented as Algorithm 5.1.

The value returned is incremented by one to assure that the loop will be run at last

once.

• MEASURE – calibrates the computation cycle using CALIBRATE and then executes it for

that amount of time returning a number of computation cycles execute and a time
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needed to execute it. That is described as Algorithm 5.2.

In these algorithms now() is a function returning the current time.

Require: CODE - a fragment of code to measure
Require: t i me - a time the code is going to run

1: loops ← CALIBRATE(CODE , t i me)
2: st ar t ← now()
3: for i ← 1. . . loops do
4: run CODE
5: end for
6: end ← now()
7: return (loops,end − st ar t )

Algorithm 5.2: Algorithm to measure the execution of a fragment of code.

Actually, the MEASURE macro also collects information about CPU time of a benchmark’s

process/thread but that was omitted here for the clarity.

Benchmarks can be fine-tuned by means of environmental variables. The names of these

variables will be given as parameters to the descriptions of the benchmarks. Every benchmark

will return a non-zero return code when any problem happens (e.g. a socket could not be

opened) so that the error can be handled properly on the higher level.

StressInt

The simplest benchmark runs a very tight, CPU-intensive loop that is presented on the fol-

lowing listing:

int LOOP( int x ) {

int i , j ;

for ( i =0; i < 1000; i ++)

for ( j =0; j < 100; j ++)

x ^= x + ( i & j ) ;

return x ;

}

Some work had to be done to fool C compiler (here, GCC is used) so that it would not opti-

mize out the calls to this function. It was enough to compile the code in a separate file and

link it later. Mind that optimizations are very specific to compiler vendor and/or its version.

For example, a feature called link-time optimization of some new compilers could possibly

optimize out these calls as well. That would make the results of the presented benchmarks

meaningless, as the time required to run one call of LOOP would be reduced to nearly zero.

Clearly, this fragment of code is not doing anything practical. It is just doing a bunch of

integer operations for some time and returns the result. There are virtually no accesses to the

main memory and the whole code fits in the fastest cache of the processor. Therefore, what

this benchmark is measuring is a pure "looping" speed, i.e., a speed of instruction fetching

(from the cache closest to the core) and execution thereof.

The algorithm behind the StressInt benchmark is presented as Algorithm 5.3.



5.2. Micro-benchmarks 59

Require: t i me - time the benchmark will run {default: 2 seconds}
1: (loops, t i me) ← MEASURE(LOOP(0), T )

2: loops_per _sec ← loops
ti me

3: return loops_per _sec

Algorithm 5.3: StressInt benchmark.

By default, the benchmark will run for 2 seconds but this can be adjusted by setting envi-

ronment variable time. Note, however, that for high enough values the result should be the

same, because the result is measured in loops executed per each second.

The expected result of this benchmark, when run on an emulated environment is that the

result is proportional to the emulation ratio µ. Indeed, if the CPU frequency is emulated to

be a half of the speed of the maximum frequency, then it is expected that the result obtained

by this benchmark will be approximately two times lower.

As a last remark, please note that at some point during the work, LINPACK benchmark

(which is a part of HPCC benchmark [HPC]) was used instead of StressInt benchmark. LIN-

PACK benchmark is used to evaluate the world’s most powerful computer systems in a famous

TOP500 [TOP] ranking. However, when it comes to the tests constrained to one machine,

LINPACK benchmark, being much more complicated than StressInt, is harder to maintain

and run. Therefore it was finally replaced by StressInt.

Sleeper

In this micro-benchmark a program doing some IO operations multiplexed with CPU-intensive

work is emulated. This tries to represent a common scenario: access to input-output device

to get data for computation and then perform the computation itself.

The algorithm for Sleeper benchmark is shown in Algorithm 5.4.

Require: t i me - time the benchmark will run {default: 3 seconds}
1: loops ← CALIBRATE(LOOP(0), t i me

3 )
2: st ar t ← now()
3: for i ← 1. . . loops do
4: LOOP(0) {Phase 1}
5: end for
6: end ← now()
7: span ← end − st ar t
8: sleep(span) {Phase 2}
9: for i ← 1. . . loops do

10: LOOP(0) {Phase 3}
11: end for
12: end ← now()
13: whole_t i me ← end − st ar t
14: loops_per _sec ← 2·loops

whole_t i me
15: return loops_per _sec

Algorithm 5.4: Sleeper benchmark.
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One can see that the benchmark consists of 3 phases:

1. CPU-intensive phase – basically it is StressInt benchmark run for t i me
3 seconds,

2. IO-intensive phase – the process sleeps (what simulates any kind of IO operations) for

the same amount of time,

3. CPU-intensive phase – the same as the first phase.

The expected output of the benchmark should be proportional to the frequency of the

CPU, or alternatively, to the emulation ratio µ.

UDPer

The next benchmark is concerned only about IO-intensive type of work. The idea is to send a

lot of UDP packets (that contain a buffer of size 1 KB) in a loop and measure the time required

to do that. The result is a number of packets send per each second on average. The algorithm

of the benchmark is given as Algorithm 5.5.

Require: t i me - time the benchmark will run {default: 1 second}
Require: addr ess - IP address of the destination {default: any non-existing address}

1: bu f f ← buffer of length 1024 bytes
2: (loops, t i me) ← MEASURE(sendto(addr ess, bu f f ), t i me)

3: loops_per _sec ← loops
ti me

4: return loops_per _sec

Algorithm 5.5: UDPer benchmark.

This benchmark depends very much on the configuration of the network, the speed of

the underlying hardware (network card), so the results are not comparable if run at different

configurations. Since this benchmark will be run only on one homogeneous cluster, this will

not be an issue.

At the first sight, the output of this benchmark should not vary with the frequency of the

CPU. Even if the speed of the CPU is halved, the speed of the hardware remains the same,

and, therefore, it seems that one should expect no difference in the results. This is wrong

because the CPU is nonetheless involved in the network operations. For example the CPU

has to split data to packets, compute checksums, communicate with the network card, etc.

Consequently, the result can and will vary with the frequency of the CPU, as we will observe

later. This happens only when the CPU is not able to "keep up" with the network card, i.e.,

the computational part of the work becomes a bottleneck of the whole process.

STREAM

STREAM benchmark [McC07] is the only benchmark that is not prepared by the authors for

the evaluation. It was only modified slightly to output the result in a way that is compatible

with remaining benchmarks.

STREAM is used to measure sustainable memory bandwidth (in MB/s) for simple vector

kernels. There are exactly 4 kernels:
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1. COPY – copying from one part of memory to another one: ai = bi ,

2. SCALE – as COPY but the value is multiplied: ai = q ·bi ,

3. SUM – values are copied from two parts of the main memory and their sum is stored:

ai = bi + ci ,

4. TRIAD – a mixture of SCALE and SUM: ai = bi +q · ci .

The numbers stored in the arrays are double numbers which usually occupy 8 bytes.

Depending on the CPU architecture, type of the memory and various different charac-

teristics the result for each kernel will be slightly different. Also it is very important to set a

proper size of memory used by the benchmark. If it is not big enough, it may fit in processor’s

cache, spoiling the results as main memory will not be accessed at all.

The precise algorithm is very simple and is presented below as Algorithm 5.6. This will

only show the TRIAD kernel as the remaining kernels are analogous.

Require: n - size of the arrays
Assume: si ze - size of the double type

1: a ← array of size n
2: b ← array of size n
3: c ← array of size n
4: scale ← 3.0
5: for i ∈ 0. . .n −1 do
6: ai ← 1.0
7: bi ← 2.0
8: ci ← 0.0
9: end for

10: st ar t ← now()
11: for i ∈ 0. . .n −1 do
12: ai ← bi +q · ci

13: end for
14: t i me ← now() −st ar t
15: r esul t ← 3n·si ze

t i me
16: return r esul t

Algorithm 5.6: STREAM benchmark.

How the memory speed should be affected by the CPU speed emulation is not clear, since

both parameters are closely related. The speed of the memory directly controls the speed of

instruction fetching and of memory accesses, and consequently – the speed of execution. On

the other hand, a slower CPU will execute instructions accessing the memory slower, so will

indirectly degrade the memory speed, at least from the perspective of a user. Ideally both

parameters, i.e., the execution speed and main memory speed, would be controlled indepen-

dently, which seems impossible to achieve completely.



5.2. Micro-benchmarks 62

Procs

This benchmark is used to test the influence of CPU emulation on work consisting of multi-

ple processes. Nowadays, when processors come with many cores this question is very im-

portant. Some programs can detect multiple cores and split their work to many processes or

threads to accomplish the task. Procs benchmark is simulating exactly this situation using a

standard set of system calls to fork processes, join them, etc.

The general idea here is to run StressInt benchmark by multiple processes at the same

time. Both the time of the computation and a number of processes are configurable. This

benchmark is presented as Algorithm 5.7.

Require: n - number of processes {default: 4 tasks}
Require: t i me - the time of computation {default: 2 seconds}

1: loops ← CALIBRATE(LOOP(0), t i me)
2: st ar t ← now()
3: for i ∈ 1. . .n in separate process do
4: for j ∈ 1. . . loops do
5: LOOP(0)
6: end for
7: end for
8: wait for all spawned processes
9: t i me ← now() −st ar t

10: return loops
ti me

Algorithm 5.7: Procs benchmark.

The expected behavior of this benchmark depends on the number of tasks (n) and the

number of cores available (c):

• n ≤ c – in that situation all processes can run concurrently and finish at the same time.

Thus the result should be the same as StressInt, i.e., proportional to the speed of the

CPU, or emulation ratio µ;

• n > c – here the result depends very much on the scheduler of the operating system

itself. If n = kc for some k, then it is expected that the result will be k times lower than

the StressInt benchmark. It is due to the fact that on each core exactly k tasks will be

executed and again they will finish at the same time, even slowed down by the factor of

k.

In the experimental results, only the discussed situations will be evaluated, that is to say,

n will be either not greater than c, or will be its multiple.

Threads

Threads benchmark is almost identical to the previous benchmark. The difference consists in

spawning threads in a place of processes. For that purpose POSIX thread library is used. The

algorithm itself is presented as Algorithm 5.8.
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Require: n - number of threads {default: 4 tasks}
Require: t i me - the time of computation {default: 2 seconds}

1: loops ← CALIBRATE(LOOP(0), t i me)
2: st ar t ← now()
3: for i ∈ 1. . .n in separate thread do
4: for j ∈ 1. . . loops do
5: LOOP(0)
6: end for
7: end for
8: wait for all created threads
9: t i me ← now() −st ar t

10: return loops
ti me

Algorithm 5.8: Threads benchmark.

As one can see, the two benchmarks seem almost identical. Thus the result of Threads

benchmark should be the same.

5.3 Testing environment

During the work, Grid’5000 testbed [G5K] was used extensively. It is a distributed infrastruc-

ture in 9 sites around France, for research in large-scale parallel and distributed systems.

These sites are: Lille, Rennes, Orsay, Nancy, Bordeaux, Lyon, Grenoble, Toulouse and Sophia.

It is presented in Figure 5.1.

The Grid’5000 project was launched in years 2003-2005, but was not opened to the users

before 2005. Today, the further development is done by INRIA, under the ADT ALADDIN-G5K

initiative with support from CNRS, RENATER and several universities as well as other funding

bodies.

The platform has a history of some spectacular applications. For example it was used to

help with a factorization of RSA-768 number in RSA Factoring Challenge [KAF+10].

At the time of writing Grid’5000 consists of:

• 19 different node families,

• 1475 nodes,

• 2970 processors (AMD - 32%, Intel 68%),

• 6906 cores.

Grid’5000 backbone network infrastructure is provided by RENATER. RENATER is the

French National Telecommunication Network for Technology, Education and Research. The

standard infrastructure is based on 10 Gbps dark fiber connections. Grid’5000 sites see each

other inside the same VLAN at 10 Gbps. This makes a work with Grid’5000 very simple and

efficient, since for the user it is just a one big network. A few bottlenecks still exist, like the

link between Lyon and Paris, where the 10 Gbps bandwidth is shared between all the sites
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Figure 5.1: Grid’5000 sites and its backbone network.

above Lyon and all the sites under Lyon. Generally, the network is isolated from the rest of

the Internet, but inside the network there is no restriction on the connections.

The network topology of every site is different and each site consists of few heterogeneous

clusters with different hardware. Some sites are equipped in a high performance networks,

like the ones based on Infiniband or Myrinet technology.

Each user of the platform has an account created which allows to:

• access the Grid’5000 wiki,

• subscribe to important mailing lists,

• disk quota for your home directory on each of Grid’5000 sites using NFS (home direc-

tories are not kept in synchronized state between the sites),

• access to Grid’5000.

To access Grid’5000, SSH is used. To make and control reservations in the grid, OAR [OAR]

is used. It is a resource management system for high performance computing. OAR provides

many nice features:

• interactive jobs – instant reservations of resources,

• advanced reservations – the resources will be reserved at that time for that duration,

• batch jobs – the job does not have to be overlooked,
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• best effort jobs – access to as many resources as possible but they will be released if

somebody else needs them,

• deploy jobs – an ability to deploy a manually customized image of an operating system,

• powerful resource filtering – reservation of nodes that match specific criteria (like size

of main main memory, processor’s speed, etc.),

• and many more.

There is one independent instance of OAR per each site. Hence, to reserve nodes at differ-

ent sites simultaneously, one has to make them independently. To make the process simpler,

additional tools were developed to make grid-wide reservations. The only disadvantage is

that they lack atomicity, that is assured at site’s level.

During the work covered in this thesis, an ability to deploy a customized distribution of

the operating system was used extensively. Normally, all the nodes in the grid run Linux op-

erating system that is configured to work with OAR reservations. It is nevertheless possible

to replace it completely, not only with a different image of Linux operating system, but also

with a completely different operating system, like FreeBSD or (even) Windows. There were

few reasons to use this type of jobs when working on CPU emulation:

• access to the root account – normally the user cannot use root account on the nodes;

unfortunately it is a must to have an access to administrative options when working on

CPU emulation,

• an ability to test different versions of Linux kernel – same as above, the user cannot

change the kernel on the nodes; with the deployed node this can be done easily,

• an access to software unavailable with the default node configuration.

As a matter of a fact, this kind of reservations was used almost exclusively during the work.

This was only a short description of Grid’5000. The website of the project

(https://www.grid5000.fr/) provides more information and some introductory material

how the interaction with the grid looks like.

5.4 Results and discussion

5.4.1 Details of experiment

The tests presented in this chapter were run on the parapide cluster (located in Rennes) of 25

identical Sun Fire X2270 machines, equipped with two Intel Xeon X5570 (Nehalem microar-

chitecture) and 24 GB of RAM each. The Intel Xeon X5570 provides frequency scaling with

11 different levels: 2.93, 2.80, 2.67, 2.53, 2.40, 2.27, 2.13, 2.00, 1.87, 1.73, and 1.60 GHz. Both

Intel Turbo Boost and Hyper-Threading were disabled during the experiments, as they could

influence the results in a more or less undeterministic way.

The customized image deployed on the cluster used an unmodified 2.6.33.2 Linux kernel

and had a variety of additional tools related to the CPU emulation. To schedule the tests, a

https://www.grid5000.fr/
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Figure 5.2: StressInt benchmark on one core.

test framework written in Python was developed. Only one test was running on each node

at a given time. Each individual test was reproduced 40 times and the values presented on

the graphs are the average of all samples with the 95% confidence intervals (though most

experiments produce very stable results, hence the confidence intervals might not be visible).

The same tests were also run on a cluster equipped with AMD Opteron 252 CPUs (chti cluster

in Lille), and no significant difference was found.

5.4.2 Benchmarks on one core

As can be seen in Figure 5.2, all methods perform well when a CPU-intensive application runs

inside the emulated environment, i.e., they all scale the speed of the application proportion-

ally to the value of emulated frequency. However, though it cannot be seen on the graphs, the

most stable results are produced by Fracas method, and the results with the highest variance

are produced by CPU-Lim method.

How the emulation of CPU frequency should influence the performance of the network,

or of any other IO operation, is unclear. One could assume that their respective performance

should be completely independent. However, IO operations require CPU time to prepare

packets, compute checksums, etc. The methods exhibit very different behaviours in UDPer

benchmark, as shown in Figure 5.3, though which one should be considered the best is not

clear. CPU-Lim, Fracas and CPU-Gov only scale IO performance up to a certain point, which

could be consistent with the fact that IO operations require a certain amount of CPU per-

formance to perform normally, but that adding more CPU performance would not improve

the situation further. On the other hand, CPU-Hogs scales IO performance linearly with the

emulated frequency.

All the methods, with a sole exception of CPU-Lim, perform very well in Sleeper bench-

mark, as presented in Figure 5.4. This is expected, because CPU-Lim does not take the sleep-
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Figure 5.3: UDPer benchmark on one core.
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Figure 5.4: Sleeper benchmark on one core.

ing time of a process into the account, and wrongly gains an advantage after a period of sleep.

At the beginning of the phase 2, the CPU usage of the process is exactly µ as CPU-Lim stops

and resumes process to keep it at that level. After the end of phase 2, however, the CPU us-

age falls below to a value of µ
2 . Thus, at the beginning of phase 3 the process will be allowed

to run at full speed (CPU-Lim will not send it SIGSTOP signal) for some time. Actually, this

period of time (∆t ) can be explicitly computed as follows:

µ+∆t

2+∆t
= µ

µ+∆t = 2µ+∆tµ
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Figure 5.5: CPU-Lim method with Sleeper benchmark. The numbers below represent time,
above – CPU usage at that moment. After a sleeping period CPU-Lim gives advantage for
time ∆t .
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Figure 5.6: STREAM benchmark on one core.

∆t (1−µ) = µ

∆t = µ

1−µ
This is presented in Figure 5.5.

The problem lies in the way the CPU-Lim method calculates CPU usage. It is computed

for the whole lifetime of a process which may not be correct, as has been shown. An alter-

native approach is to regularly compute an approximation to the current CPU usage instead.

This could improve the results or at least mitigate the problem observed with Sleeper bench-

mark. Amongst the well-behaving methods, the most stable results are produced by CPU-Gov.

Which method provides the best results in terms of the main memory speed, i.e., STREAM

benchmark, is not obvious from the results in Figure 5.6. It may be only noted that the most

predictable and easy to understand behavior is that of CPU-Hogs and Fracas, since the mem-

ory speed perceived by the emulated process is stable and almost linear with the respect to

the emulated frequency. This can neither be said about CPU-Lim method, whose results fluc-



5.4. Results and discussion 69

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3

400

600

800

1,000

1,200

1,400

1,600

1,800

Emulated CPU frequency (GHz)

Lo
o

p
s/

se
c

CPU-Lim
CPU-Hogs

Fracas
CPU-Gov
CPU-Freq

Figure 5.7: Procs benchmark on one core.

tuate greatly, nor about CPU-Gov method which gives predictable results, but without any

obvious relation to the value of emulated frequency. Actually the concave curve observed in

the case of CPU-Gov for the frequencies between 1.6 GHz and 2.93 GHz is something that is

specific to a particular processor. For AMD processors, for example, this curve was different,

as was observed in another experiment.

With multiple tasks, either processes or tasks, it is expected to linearly and independently

degrade the speed of each CPU-intensive task. Most methods provide good results in the

Procs benchmark as seen in Figure 5.7, with the exception of CPU-Lim. As CPU-Lim com-

putes the CPU usage independently for each process, but does not sum it to compute the

virtual node ’s CPU usage, it appears that the CPU-Lim method does not emulate anything,

as the CPU usage of each independent process stays under the limit.

The expected behavior in the Threads benchmark presented in Figure 5.8 is exactly the

same, as in the previous benchmark. This time even the CPU-Lim method performs very

well, because the CPU time of the emulated threads is accumulated for the whole process.

Again, there is no clear winner in terms of the stability of the results, i.e., all methods give

satisfactory results in that sense.

5.4.3 Benchmarks on 2, 4 and 8 cores

Contrary to the previous set of tests, the micro-benchmarks were run in an environment em-

ulating more than 1 core. All single-task benchmarks gave the same results as before, so they

are not included.

The results clearly show the superiority of CPU-Hogs and CPU-Gov methods, as the result

of the benchmarks is proportional to the emulated frequency only in their case (and for the

CPU-Freq method, but it’s not able to emulate continuous range of frequencies, and therefore

is not considered as a fully functional method). Additionally, CPU-Hogs is superior to CPU-
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Figure 5.8: Threads benchmark on one core.
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Figure 5.9: Procs benchmark on 2 cores.

Gov in terms of stability of results, providing results with a slightly smaller variation.

The CPU-Lim method is able to properly emulate multiprocessing type of work, however

only when each process can run on an independent core. This can be seen in Figure 5.11 – all

processes cannot saturate available cores and CPU-Lim works as required. Nevertheless, we

can see that the result is too high most of the time for benchmarks with a lower number of

tasks, due to CPU-Lim’s problem with computing CPU time (Section 3.2.2). As the benchmark

consists of 5 processes, each of them will get approximately 2·100%
5 = 40% and 4·100%

5 = 80% of

the CPU time, for cases in Figure 5.9 and Figure 5.10, respectively. As can be seen, this is pre-

cisely a fraction of maximum CPU frequency where the graph suddenly drops. Therefore, in
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Figure 5.10: Procs benchmark on 4 cores.
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Figure 5.11: Procs benchmark on 8 cores.

general, CPU-Lim will not properly emulate a group of processes in multi-core configuration.

A different problem can be seen in the case of the Threads benchmark. Now, the CPU-

Lim method gives values lower than the expected ones. This is because it controls processes

(or groups of threads), not threads. The CPU time of a process is a sum of CPU-times of all its

threads, and as such, it may go up faster than the realtime clock. Moreover, when CPU-Lim

sends a signal to stop the process, all its threads will be stopped. Put together, this explains

why the results in Figure 5.12, Figure 5.13, and Figure 5.14 are precisely 2, 4, and 8 times lower

than those for CPU-Hogs or CPU-Gov.

A very strange phenomenon can be observed in Figure 5.10 – the benchmark gives higher
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Figure 5.12: Threads benchmark on 2 cores.
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Figure 5.13: Threads benchmark on 4 cores.

results in the environment emulated with CPU-Lim than in the unmodified one. This counter-

intuitive behavior is due to the kernel which, when the processes are run normally, will put

every process on one of 4 cores and, as there are 5 processes in total, one core will exe-

cute two processes simultaneously. They will run twice as slow as the remaining ones and,

consequently, will degrade the overall result of the benchmark (it is possible to mitigate the

problem by extending the time of the benchmark). With CPU-Lim method, the processes are

stopped periodically, forcing the scheduler to migrate them between unused cores and giving

them fairer amount of CPU time. It seems that the Linux scheduler, as much as advanced it is,

is by no means perfect. But even knowing that, the conclusion must be drawn that CPU-Lim
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Figure 5.14: Threads benchmark on 8 cores.

behaves improperly, as we aim to emulate the exact behavior of the unmodified kernel.

The results for Fracas method show, as was already observed in [BNG10a], that the method

does not work well for multitasking type of work. The results of the benchmarks are much

lower than expected. For example, it can be seen in Figure 5.12, Figure 5.13 and Figure 5.14

that the results are 2, 4, and 8 times lower, respectively. This is because the priority of cgroup

consisting of the emulated tasks is constant (as defined by Equation 3.3). Even if the emulated

tasks are running on different cores, the total allowed CPU time of them will be bounded by

this priority. The priority of the cgroup can be adjusted so that it will work for a particu-

lar number of processes inside the emulated environment, but, unfortunately, there is no a

generic value that will work for every possible number of tasks.

Also, one can see a significant discrepancy between pairs of figures: Figure 5.9 and Fig-

ure 5.12, Figure 5.10 and Figure 5.13. This does not happen in the last pair: Figure 5.11 and

Figure 5.14. Again the reason is the scheduler and was observed in CPU-Lim case before -

when there are more tasks than cores in the system, some arbitrary decisions made by the

system make the parallel execution suboptimal. Evidently, this is much more expressed in

the case of multiple number of threads, not processes, but was also manually triggered in

the latter case. This could have been expected, but the difference in the execution time is

startling. More confusingly, the behavior of the scheduler can change quite dramatically with

every version of the Linux kernel. That was in fact so, and other anomalies were observed

with different releases of Linux kernel.

The results clearly show that reliance on the system scheduler may be deceiving and, as a

result, the Fracas method should not be used to emulate an environment with multiple tasks

(unless the number of cores is greater than their number).
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5.5 Summary

The results obtained in this chapter show that the CPU-Gov and CPU-Hogs methods show a

big improvement over the previously used methods.

Clearly, the CPU-Lim method should not be used in a general case, as there are many

problems with this method. It fails both for the basic benchmarks (Sleeper) and for multi-

tasking benchmarks (Procs and Threads). If possible the other methods should be used, as

they are much more transparent to the emulated processes and give more stable results.

The Fracas method can be used in a very specific situations and in these situations it

performs well. Namely the scenarios without multiple concurrent tasks will be emulated

properly. Unfortunately, this greatly limits the applicability. Moreover, this forbids to emulate

multi-core architectures, what exactly is the problem this thesis is striving to solve. Another

problem with Fracas is its deep reliance on low-level Linux kernel functionality. Not only is

this method not portable to different operating systems, but also suffers from inconsistent

behavior of kernel implementation. Being aware of this fact, it is advised to use the method

exclusively on a well tested version of the Linux kernel, as the different kernel may change

the results in unexpected way.

With the CPU-Hogs or CPU-Gov methods, which performs almost equally well, the quality

of emulation is much higher. They show accurate and stable results in benchmarks whose

idealized output is understood (StressInt, Sleeper, Procs and Threads).

If it comes to the speed of main memory, it can be postulated that the CPU-Hogs method

performs better as the speed is decreasing proportionally to the emulated frequency. CPU-

Gov’s results are nonlinear, depend on the hardware parameters which are not directly avail-

able to the user, and therefore, are somewhat uncontrollable.

On the other hand, CPU-Gov seems to perform much better in UDPer benchmark. The

speed of IO operations is constant for a reasonable spectrum of frequencies, whereas CPU-

Hogs is slowing them down proportionally to the emulated frequency.

To sum up, from all methods presented and evaluated, it is strongly recommended to use

CPU-Gov and CPU-Hogs. CPU-Gov should be used for the emulation of environments where

IO operations are common, or stated differently, the IO operations constitute a significant

part of the whole computation. If, on the other hand, the environment consists almost ex-

clusively of CPU-intensive applications, then the CPU-Hogs method should be used. In the

mixed scenarios, where both type of computation are present, any method can be used.

The summary of methods, in the context of Section 2.2, is given in Table 5.1.
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Benchmark CPU-Freq CPU-Lim CPU-Hogs Fracas CPU-Gov

StressInt Good Good Good Good Good
Sleeper Good Incorrect Good Good Good
UDPer - Good Bad Good Good

STREAM Bad Mediocre Good Good Bad
Procs (one core) Good Incorrect Good Good Good

Threads (one core) Good Good Good Good Good
Procs (many cores) Good Incorrect Good Incorrect Good

Threads (many cores) Good Incorrect Good Incorrect Good

Property CPU-Freq CPU-Lim CPU-Hogs Fracas CPU-Gov

Correctness Excellent Bad Good Bad Good
Accuracy Limited Mediocre High High High
Stability Excellent Bad High High High

Scalability Excellent Bad Limited High High
Intrusiveness None High Low Low Low

Portability Yes Yes Yes No Partial

Table 5.1: The summary of results.



Chapter 6

Conclusions

6.1 Summary of the work

This work is an effort to cope with the problem of reproducibility of the results scientific re-

sults in computer science. Every scientific result should verifiable, as happens normally in

publications on mathematics, for example. The difficulty of reproducing the experimental

results is a problem that haunts computer science community, as sometimes the results pre-

sented in papers cannot be reproduced by the readers, and sometimes even by the authors

themselves. There is no obvious solution to this, but with CPU emulation and other tech-

niques used together, at least the conditions of the environment can be controlled determin-

istically and reproduced if needed.

Moreover, the multi-core emulation of processors can be used to run experiments that

normally would not be attainable. The idea is to exploit the fact that machines with multiple

processors and cores can be used to emulate multiple machines, effectively enlarging the

scale of the experiments by an order of magnitude with the same hardware.

Additionally, the emulation of CPU performance is an important asset in the context

of the evaluation of applications targeted at heterogeneous systems. In this thesis, existing

methods for this problem were presented: CPU-Freq, CPU-Lim, CPU-Burn and Fracas. All

these methods have been thoroughly described and their advantages and disadvantages have

been explained. As a result the necessity of devising new methods for this particular problem

was established, as no method was satisfactory. Consequently, new methods were devised

and are proposed in this work: CPU-Gov and CPU-Hogs. The CPU-Gov method is a clever

generalization of CPU-Freq method, and the CPU-Hogs method is a multi-core implementa-

tion of the CPU burning technique.

The thesis contains many theoretical definitions in the domain of multi-core emulation

of CPU performance. To authors’ knowledge it happens to be the most complete discourse

on the subject so far.

After description of both the idea and the implementation of all methods, they were eval-

uated to compare their applicability and quality. The validation used a set of carefully pre-

pared micro-benchmarks testing the most important features of the methods. It was shown

very precisely that the existing methods cannot emulate the general case of CPU emulation

problem. On the other hand, the new methods perform exceedingly better in virtually ev-

76
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ery situation and both can be used to emulate ever more complex scenarios. We believe that

these two methods are nearly optimal solutions to the problem of CPU emulation and can be

considered the current state-of-the-art knowledge in this domain.

6.2 Future work

First, a more complex validation of CPU emulation methods should be done than the one by

means of micro-benchmarks only. They give only a limited insight to the correctness of the

emulation as every one considers an artificial scenario.

Also, and this was an idea at the very beginning of the research, the methods presented

could be integrated in Wrekavoc, which is a tool to emulate complex network topologies with

fine-grained control over parameters of the nodes. Moreover, the methods could be ported to

other operating systems and evaluated there to see if the results are the same.

The emulation of memory speed should be investigated. This can be crucial in some

applications where the speed of main memory is a factor that cannot be neglected. This is

becoming more important as NUMA systems are becoming more popular.

The more complex emulation of processors could be considered. In this work we focus

on the speed of processors, but it would be interesting to control other features of it: size of

caches at different levels, simultaneous multithreading implementations in processors, etc.

This appears to be a very difficult problem, as these parameters of processor are of great

complexity, and very small periods of time are involved. It is even doubtful if this can be

controlled from the software at all.

Finally, some work could be done in the domain of reproducibility and scalability of ex-

periments. Distest framework is an interesting approach to achieve both of them.



Appendix A

Streszczenie

W pracy tej dyskutowane jest zagadnienie emulacji prędkości proceso-

rów wielordzeniowych. Poza przedstawieniem istniejących rozwiązań

oraz aktualnego stanu wiedzy na ten temat, przedstawione są dwa nowe

podejścia: CPU-Hogs oraz CPU-Gov, które w założeniu mają usprawnić

jakość emulacji. Po krótkim omówieniu metod oraz ich implementacji,

wszystkie one są poddane testom, które pokazują, że nowe propozycje

są rzeczywiście lepsze. Praca zamyka się podsumowaniem, w którym

przedstawiono końcowe wnioski z wyników badań oraz dalsze kierunki

badań.

Podczas prac wykryto w jądrze systemu operacyjnego Linux błędy, do

których poprawki zostały zaakceptowane i zostaną włączone do wersji

2.6.37.

Wyniki badań zostały przedstawione również w pracy [BNG10a] oraz w

raporcie technicznym [BNG10b].

Wstęp

Badanie algorytmów oraz aplikacji przeznaczonych dla rozproszonych środowisk takich

jak klastry oraz gridy obliczeniowe, platformy cloud computing lub sieci P2P jest bardzo skom-

plikowanym procesem. Przede wszystkim, nie istnieje jednoznaczne rozwiązanie pozwalające

na przeprowadzanie badań w ramach systemów rozproszonych. W większości przypadków

oprogramowanie powstałe na potrzeby eksperymentu jest przygotowywane niezależnie od

pozostałych badań. Część funkcjonalności z pewnością zostaje zawsze przepisana od nowa,

a mimo to rozwiązanie nie jest dostosowane do ponownego użycia podczas kolejnych ba-

dań. Jest to żmudna, czasochłonna praca, a dodatkowo rzuca cień na poprawność takiego po-

stępowania. Powszechnie wiadomo, iż bezpieczniej jest używać istniejącego i sprawdzonego

oprogramowania (zwłaszcza w kontekście bezpieczeństwa systemu) niż napisanego całkowi-

cie od nowa, którego błędy nie miały szansy się jeszcze ujawnić. Dodatkowo, jak pokazano w

kontekście eksperymentów dotyczących sieci BitTorrent [ZIP+10], nawet metodyka zbierania

wyników badań nie jest ani oczywista, ani jedyna. Okazuje się, że sam sposób dokonywania

pomiarów, może wpłynąć istotnie na same wyniki badań. Fakt, że pomiar wpływa na sam

wyniku tego pomiaru był znany od dawna, ale zaskakuje fakt, że dotyczy on również eks-

perymentów przeprowadzanych na deterministycznych maszynach. Co więcej, gdy mowa o

78



Streszczenie 79

badaniach w dziedzinie systemów rozproszonych, których cechą jest niemożność uzyskania

wiedzy o stanie globalnym systemu oraz synchronizacji czasu, należy pamiętać, że całkowicie

dokładnych wyników po prostu otrzymać nie można.

Kolejnym problemem jest trudność kontroli nad tak złożonymi systemami jak klastry, czy

gridy obliczeniowe, gdyż współcześnie składają się one z setek, czy nawet tysięcy maszyn.

Prawdopodobieństwo zajścia pojedynczej awarii w takich systemach jest całkiem duże, a roz-

proszony charakter pracy jeszcze bardziej pogarsza sytuację. Bez wątpienia uzyskiwanie wia-

rygodnych wyników eksperymentów w tego rodzaju sytuacjach jest o wiele trudniejsze niż w

przypadku pojedynczych maszyn lub systemów scentralizowanych.

Ale nawet w sytuacjach, gdy kontrola nad eksperymentem jest zapewniona, parametry

samej platformy, na której przeprowadzany jest eksperyment, nie są całkowicie pod kontrolą

badacza. Systemy komputerowe jednorodne (homogeniczne) są systemami, których części

składowe (sprzęt, oprogramowanie, sieć) są takie same w każdym węźle systemu. Przykładem

tego rodzaju systemów są np. klastry obliczeniowe, które składają się z identycznych maszyn

połączonych siecią. Fakt, że wszystkie elementy platformy do badań są identyczne ułatwia

znacznie pracę z taką platformą, ale nie odbywa to się bez kosztów. Przede wszystkim trzeba

zauważyć, że nawet systemy homogeniczne są w pewnym stopniu niejednorodne (heteroge-

niczne). Jest to wynikiem pewnych losowych zdarzeń, których kontrolować nie można, m.in.

losowymi obciążeniami systemu, błędami na poziomie sprzętu, itd. Badania przeprowadzane

w takich wyidealizowanych warunkach mogą dodatkowo nie ukazać sytuacji, które ujawnią

się w środowisku heterogenicznym. Przykładowo może się zdarzyć, że podczas testów nie

wykryta zostanie sytuacja zakleszczenia, a ujawni się w systemie produkcyjnym. W rezultacie

kontrola nad parametrami środowiska badawczego powinna pozwolić na uzyskanie bardziej

dogłębnych i ogólnych wyników oraz być może, wyników powtarzalnych.

Jako metodę przeprowadzania eksperymentu można użyć symulację, gdzie model apli-

kacji jest badany w środowisku symulowanym [GJQ09]. Jest to podejście bardzo syntetyczne

i teoretyczne. Eksperymenty mogą być przeprowadzane na bardzo dużą skalę, gdyż nie wy-

magają rzeczywistej platformy. Otrzymane wyniki są bardzo ogólne, ale mogą istotnie odbie-

gać od rzeczywistości, gdy wykorzystany model będzie nieadekwatny. Jako drugą skrajność

można badać końcowe aplikacje w środowisku rzeczywistej platformy (tzw. eksperymenty

in-situ). Niestety rzeczywiste środowiska mogą nie spełniać wymagań badacza: infrastruk-

tura może być zbyt mała, a jej cechy nieodpowiednie. Co gorsza, możliwość zmiany pod-

stawowych własności systemu często jest dostępna jedynie administratorom systemu, a nie

jego końcowym użytkownikom. Z tego powodu eksperymenty in-situ są istotnie ograniczone:

wyniki nie są ogólne i może istnieć potrzeba przeprowadzenia eksperymentu w innym śro-

dowisku. Jako trzecie, wyważone podejście można uznać emulację, która polega na bada-

niu rzeczywistej aplikacji na platformie, której parametry można dowolnie konfigurować, aby

otrzymać odpowiednie warunki eksperymentalne. Mówimy wówczas, że platforma jest emu-

lowana.

Rozwiązań służących do emulacji dostępnych jest wiele, m.in.: MicroGrid [SLJ+00], Mo-

delnet [VYW+02], Emulab [WLS+02] oraz Wrekavoc [CDGJ10], ale większość z nich skupia się

na emulacji sieci, tj. można dzięki nim emulować skomplikowane topologie wraz z warto-

ściami przepustowości i opóźnienia łącz.
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Zaskakującym jest fakt, że problem emulacji prędkości procesorów zazwyczaj nie jest po-

ruszany w tych rozwiązaniach. Jest to jednak bardzo istotny czynnik w przypadku badań nad

systemami rozproszonymi. To, jak wydajność procesora wpływa na wydajność aplikacji oraz

jak aplikacja zachowuje się w ramach systemu heterogenicznego może być bardzo ważna.

Współcześnie procesory wielordzeniowe stają się wszechobecne. Daje to dodatkowe ko-

rzyści - można ich użyć do emulacji wielu maszyn za pomocą tylko jednej. Z możliwością

kontroli prędkości każdego rdzenia, możliwe byłoby stworzenie złożonej i powtarzalnej kon-

figuracji mocy obliczeniowej systemu służącego do badań. A to zastosowanie może okazać

się użytecznym narzędziem dla badacza, pozwalając mu na uzyskiwanie wyników bardziej

ogólnych i bliższych prawdy.

Sformułowanie problemu

Jako emulację wydajności procesorów wielordzeniowych rozumiemy emulację wielu wir-

tualnych maszyn z wykorzystaniem pojedynczego węzła wraz z dokładną kontrolą prędkości

procesorów wchodzących w ich skład (Rysunek 2.4). Każdy pomiar w emulowanym środowi-

sku powinien być powtarzalny i odpowiadać wynikom otrzymanym w środowisku nieemulo-

wanym o tych samych parametrach. Dodatkowo aplikacje uruchamiane w emulowanym śro-

dowisku nie powinny wymagać zmian w kodzie źródłowym, a sam proces emulacji nie powi-

nien wpływać na ich wykonanie w żaden inny sposób, niż zdefiniowany przez samą emulację.

Następujące własności decydują o jakości danej metody emulacji:

• Poprawność – podział procesorów na wirtualne maszyny jest poprawny oraz ich emu-

lowana prędkość odpowiada oczekiwanej.

• Dokładność – prędkość wykonywania procesów w emulowanym środowisku jest pro-

porcjonalna do emulowanej częstotliwości procesora.

• Stabilność – pomiary dokonane w emulowanym środowisku są powtarzalne.

• Skalowalność – jakość emulacji nie zależy od liczby zadań w emulowanym środowisku.

• Brak ingerencji – emulowane programy oraz system operacyjny nie wymagają (zaawan-

sowanych lub niestandardowych) modyfikacji.

• Przenośność – metodę można zaimplementować na wielu systemach operacyjnych.

Możliwość rozwiązania zagadnienia emulacji zależy od następujących czynników: emu-

lowanej prędkości (musi być mniejsza niż sprzętowa prędkość procesora), liczby dostępnych

fizycznie rdzeni (ich liczba musi być odpowiednio duża) oraz ewentualnych zależności mię-

dzy prędkością rdzeni w systemie (ograniczają one możliwości).

Aktualny stan wiedzy

Istnieje parę podstawowych technik oraz technologii pozwalających na wykonywanie apli-

kacji tak, aby odpowiadało to wykonaniu na wolniejszym procesorze.
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Dynamiczne skalowanie częstotliwości procesora (dynamic frequency scaling) (pojawia-

jące się jako technologia Intel SpeedStep u Intela, jako AMD PowerNow! na procesorach mo-

bilnych AMD i wreszcie jako AMD Cool’n’Quiet na procesorach serwerowych tej firmy) jest

technologią, która pozwala zmieniać parametry prądowe procesora, co idzie w parze z jego

prędkością. Podstawowym celem jest tutaj oczywiście oszczędność poboru prądu, ale może

również służyć zmniejszeniu emisji ciepła, co w zastosowaniach serwerowych może być przy-

datne. Częstotliwość procesora może być zmieniana w sposób automatyczny przez system

operacyjny, np. w reakcji na aktualne jego obciążenie, ale równie dobrze zmiany można do-

konać ręcznie. Dla przykładu, system operacyjny Linux pozwala na zmiany przy pomocy wir-

tualnego systemu plików sysfs oraz oferuje parę zarządców (governors), którzy mogą zająć

się tym procesem automatycznie. We wszystkich procesorach liczba możliwych częstotliwo-

ści jest ograniczona do około 5 wartości, ale pewne procesory mają nawet 11 takich pozio-

mów (Intel Xeon X5570). Należy również pamiętać, że zmiana częstotliwości nie następuje

natychmiastowo i jest obarczona pewnym niezerowym czasem. Będzie to miało znaczenie w

przypadku metody CPU-Gov.

Opis metod

Metoda CPU-Freq (Rozdział 3.2.1) jest bezpośrednim wykorzystaniem możliwości dyna-

micznej zmiany częstotliwości pewnych procesorów. Zmieniając sprzętowe napięcie na pro-

cesorze zmieniamy jednocześnie częstotliwość jego pracy i programy wykonują się odpo-

wiednio wolniej. Niestety liczba możliwych częstotliwości ograniczona jest do małego zbioru

możliwych wartości, które mogą nie wystarczyć w pewnych zastosowaniach.

Metoda CPU-Lim (Rozdział 3.2.2) została przepisana od nowa na potrzeby niniejszych ba-

dań. W metodzie tej emulowane procesy są stale monitorowane przez program (Rysunek 3.1),

który w zależności od aktualnego użycia procesora przez dany proces zatrzymuje go (użycie

przekracza ustalony próg), bądź budzi (użycie spada poniżej progu). W tym celu wykorzysty-

wane są sygnały SIGSTOP (zatrzymywanie) oraz SIGCONT (budzenie). Metoda została zapro-

ponowana przez autorów narzędzia Wrekavoc. W praktyce ma ona służyć do analizy porów-

nawczej z pozostałymi metodami, gdyż jej braki dyskwalifikują ją jako rozwiązanie nadające

się do większości zastosowań.

Metoda CPU-Hogs (Rozdział 3.3.1) jest uogólnieniem idei metody CPU-Burn, która zo-

stała zaimplementowana w narzędziu Wrekavoc, ale jest nieprzystosowana do emulacji pro-

cesorów wielordzeniowych. Podstawowa różnica polega na odpowiedniej synchronizacji wąt-

ków zajmujących się odbieraniem cyklów procesora, której brak w metodzie CPU-Burn po-

zwalał na niekontrolowane migracje procesów między procesorami. Synchronizacja wątków

w metodzie CPU-Hogs polega na cyklicznym zatrzymywaniu się na barierze, dzięki czemu

wszystkie procesory blokowane są w tym samym momencie. W ten sposób procesy nie mogą

zostać przeniesione na inne procesory i uzyskać dodatkowego czasu procesora (Rysunek 3.2).

Metoda Fracas (Rozdział 3.3.2) wykorzystuje tzw. grupy kontrolne procesów (control gro-

ups). Jest to nowatorskie rozwiązanie zaproponowane w systemie Linux, które może bardzo

przydać się w pracy administratora. Wykorzystując je można bardzo precyzyjnie przydzielić

czas procesora do grup procesów, w efekcie emulując inną prędkość wykonywania. Metoda
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polega na uruchomieniu grupy procesów wykonujących intensywną obliczeniowo pracę zaj-

mując odpowiednią ilość czasu procesora, podczas gdy emulowane procesy znajdują się w

oddzielnej grupie. Priorytety obu grup dobrane są tak, że na grupę procesów emulowanych

przypada tylko wymagana część czasu procesora (Rysunek 3.3). Niestety pewne subtelności

techniczne implementacji w jądrze oraz niestabilność zachowania planisty procesora nie po-

zwalają używać tej metody w każdym przypadku.

Wreszcie metoda CPU-Gov (Rozdział 3.3.3) jest w pewnym sensie ideowym następcą me-

tody CPU-Freq. Przełączając się między sąsiednimi częstotliwościami procesora można, przy-

najmniej w teorii, uzyskać średnią częstotliwość na odpowiednim poziomie. W praktyce pro-

blemem jest emulacja częstotliwości, które są mniejsze co do wartości od najmniejszej czę-

stotliwości oferowanej przez procesor. W tej sytuacji CPU-Gov używa kolejnej funkcjonalno-

ści jądra systemu Linux, tj. podsystemu grup kontrolnych o nazwie cgroup freezer. Pozwala

on na zatrzymywanie i wznawianie całych grup procesów. W ten sposób można uzyskać

sztuczną „zerową” częstotliwość i rozszerzyć działanie metody na całe spektrum częstotliwo-

ści.

Na sam koniec warto dodać, że korzystając z cgroup freezer w metodzie CPU-Gov odkryto

błędy, które częściowo uniemożliwiły jego pełne wykorzystanie. Polegały one na pewnych

szczególnych sytuacjach wyścigu, które ujawniły się podczas intensywnego korzystania z tej

funkcjonalności. Wykryte błędy zostały naprawione przez autorów pracy i zaakceptowane do

głównej gałęzi jądra systemu Linux (patrz Rozdział 4.7.2).

Większość kodów źródłowych została napisana w języku Python, ale niektóre krytyczne

fragmenty musiano zaimplementować w języku niższego poziomu, w tym wypadku C albo

C++.

Środowisko testowe

Część eksperymentalna pracy została przeprowadzona z wykorzystaniem platformy

Grid’5000 [G5K]. Jest to rozproszony grid wykorzystywany przede wszystkim do celów ba-

dawczych, ale służy również celom obliczeniowym. Jednym z ostatnich spektakularnych za-

stosowań tej platformy było złamanie klucza RSA o długości 768 bitów [KAF+10] będącego

częścią RSA Factoring Challenge. Infrastruktura składa się z 9 lokalizacji we Francji (Rysu-

nek 5.1). Aktualnie rozwojem projektu zajmuje się INRIA, tj. Institut National de Recherche

en Informatique et en Automatique.

Na tę chwilę Grid’5000 składa się:

• 1475 maszyn,

• 2970 procesorów (AMD - 32%, Intel 68%),

• 6906 rdzeni.

Podczas pracy badawczej powstała potrzeba stworzenia narzędzia pozwalającego na wy-

dajne i powtarzalne wykonywanie testów implementowanych metod. Dodatkowo celem było

zrównoleglenie tego procesu, ponieważ inaczej eksperymenty trwały po prostu za długo. W
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ten sposób powstał Distest (Rozdział 4.6.3) - narzędzie do równoległego uruchamiania eks-

perymentów. Idea opiera się częściowo na technice MapReduce [DG04], ale jest oczywiście

nieco prostsza i mniej skalowalna. Chociaż Distest powstał z myślą o usprawnieniu wykony-

wania eksperymentów, to potencjalnie ma jeszcze inne zastosowania. Można go na przykład

wykorzystać do obliczeń równoległych. Implementacja narzędzia powstała w języku Python.

Opis eksperymentu

Przeprowadzone eksperymenty mają na celu sprawdzić jak zachowują się metody emula-

cji procesora w pewnych konkretnych sytuacjach emulacji. W tym celu zaprojektowano ze-

staw mikro-testów, których lista jest następująca (Rozdział 5.2):

• StressInt – aplikacja obliczeniowa,

• Sleeper – aplikacja zarówno intensywna obliczeniowo, jak i wykorzystująca urządzenie

zewnętrzne,

• UDPer – aplikacja korzystająca intensywnie z urządzeń zewnętrznych,

• STREAM – test prędkości pamięci operacyjnej,

• Procs – aplikacja wieloprocesowa oraz intensywna obliczeniowo,

• Threads – aplikacja wielowątkowa oraz intensywna obliczeniowo.

Od każdej metody oczekuje się konkretnych efektów emulacji dla tych testów. W przypadku

testów Procs i Threads używane są 4 niezależne procesy lub wątki.

Testy wykonano wykorzystując klaster parapide znajdujący się w Rennes. Składa się on

z 25 identycznych stacji Sun Fire X2270, posiadających po dwa procesory Intel Xeon X5570

(architektura Nehalem) i 24 gigabajty pamięci RAM. Procesor Intel Xeon X5570 ma 4 rdzenie

oraz każdy z nich może pracować na 11 różnych poziomach częstotliwości, tj. 2.93, 2.80, 2.67,

2.53, 2.40, 2.27, 2.13, 2.00, 1.87, 1.73 oraz 1.60 GHz. Dodatkowe technologie, które mogły

zaburzyć deterministyczne działanie zostały wyłączone. Tym samym technologie Intel Turbo

Boost oraz Hyper-Threading zostały wyłączone.

Testy przeprowadzono emulując pojedynczą maszynę o 1, 2, 4 i 8 rdzeniach.

Dla celów eksperymentu użyto specjalnie przygotowanego obrazu z systemem

Linux 2.6.33.2. Posiadał on również dodatkowe aplikacje, które były niezbędne w pracy. Jak

już wspomniano, do przeprowadzenia samych testów użyto narzędzia Distest, które automa-

tycznie rozdzieliło eksperyment na jednorodny klaster komputerów. Tym samym tylko jeden

test był uruchamiany na każdej maszynie w danej chwili. By wyeliminować błędy pomiaru,

każdy pomiar został wykonany aż 40 razy. Wartości prezentowane na wykresach to średnia

wartość ze wszystkich punktów pomiarowych wraz z 95-procentowym przedziałem ufności

obliczonym z rozkładu t-Studenta. Identyczny zbiór eksperymentów przeprowadzono na kla-

strze chti w Lille, który w przeciwieństwie do klastra poprzedniego używa procesorów AMD

Opteron 252. Istotnych różnic w wynikach nie odnotowano, z wyjątkiem prędkości pamięci

mierzonej w zależności od ustawionej częstotliwości sprzętowej procesora. Okazuje się, że
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ta zależność jest charakterystyczna dla producenta oraz prawdopodobnie dla konkretnego

modelu procesora. Prędkość pamięci w przypadku procesorów firmy Intel maleje w sposób

nieliniowy wraz z częstotliwością, podczas gdy procesory AMD mają liniową charakterystykę,

ale o innym nachyleniu niż zmiana częstotliwości.

Wyniki

Wszystkie metody (Rysunek 5.2) działają poprawnie w przypadku testu StressInt. Ozna-

cza to, że prędkość jej wykonania jest wprost proporcjonalna do emulowanej częstotliwości.

Najbardziej stabilne wyniki otrzymane zostały dla metody Fracas.

W przypadku testu UDPer (Rysunek 5.3) nie można jednoznacznie stwierdzić, która me-

toda działa najlepiej. Należy jednak zauważyć, że trzy metody: CPU-Lim, Fracas oraz CPU-

Gov najlepiej emulują w przypadku tego testu. Prędkość urządzeń zewnętrznych nie ulega

w ich przypadku zmianom. Co prawda, przy odpowiednio niskiej częstotliwości emulowanej

prędkość ta spada, ale można to uzasadnić wydłużeniem procesu przygotowywania pakie-

tów do wysyłki przez procesor. Metoda CPU-Hogs natomiast zmniejsza prędkość operacji

wejścia-wyjścia liniowo wraz z emulowaną częstotliwością.

Z wyjątkiem CPU-Lim, wszystkie metody zachowują się odpowiednio w teście Sleeper

(Rysunek 5.4). CPU-Lim działa niepoprawnie, gdyż jego aproksymacja użycia procesora przez

kontrolowane procesy jest błędna, gdyż proces kończący długotrwałą operację wejścia-wyjścia

uzyskuje niesłusznie przewagę nad pozostałymi procesami.

Prędkość pamięci w teście STREAM jest różna dla każdej z metod (Rysunek 5.6). Trudno

powiedzieć, która zależność jest prawidłowa, ale wydaje się, że liniowy spadek prędkości może

mieć miejsce. W związku z tym najlepiej zachowującymi się metodami w tym przypadku jest

CPU-Hogs oraz Fracas.

W przypadku testu Procs składającego się z wielu procesów (Rysunek 5.7), tylko metoda

CPU-Lim nie daje oczekiwanych wyników. Jest to sytuacja przewidziana wcześniej będąca

wynikiem tego, że współbieżnie wykonujące się procesy mają zaniżoną wartość użycia pro-

cesora i CPU-Lim takich procesów nie zatrzymuje. Jednak wszystkie one zużywają razem cały

procesor i wynik emulacji jest niepoprawny w tej sytuacji.

Tego problemu nie ma w przypadku testu Threads (Rysunek 5.8), gdyż CPU-Lim kontro-

luje tylko procesy. Wątki obliczeniowe w teście Threads są zgrupowane w postaci pojedyn-

czego procesu i jego użycie procesora jest sumą użycia procesora poszczególnych wątków. W

rezultacie zachowanie metody CPU-Lim jest identyczne jak w teście StressInt, czyli poprawne.

W przypadku emulacji procesora o liczbie rdzeni większej niż jeden, rezultaty pokazują

jasno, że proponowane metody oferują o wiele lepszą jakość emulacji. Rezultaty metody

CPU-Lim nie są zaskoczeniem, gdyż od początku było wiadomo, że metoda ta nie jest przy-

stosowana do tego rodzaju emulacji. Zawodzi również metoda Fracas, która nie jest w stanie

poprawnie emulować procesora w sytuacji pracy wielozadaniowej, jak pokazano już wcze-

śniej [BNG10a]. Wynika to z ograniczeń interfejsu grup kontrolnych i być może szczegółów

technicznych planisty procesora. Co więcej zachowanie jądra systemu Linux wydaje się róż-

nić dosyć drastycznie między wersjami, jak zaobserwowano wielokrotnie podczas badań.

Podsumowanie wyników znajduje się w Tabeli 5.1.



Streszczenie 85

Część eksperymentalna dowodzi, że metody CPU-Gov oraz CPU-Hogs są lepsze w każdym

przeprowadzonym teście i tym samym są rekomendowanym rozwiązaniem.

Wnioski

Praca ta jest próbą rozwiązania problemu powtarzalności wyników eksperymentów na-

ukowych w informatyce. Wyniki eksperymentalne powinny być nie tylko dostępne, ale rów-

nież weryfikowalne przez zainteresowane osoby. Nie istnieje oczywiste rozwiązanie tego pro-

blemu, ale z pomocą metod emulacji procesorów oraz innych technik można kontrolować

warunki doświadczalne i odtworzyć je ponownie w razie potrzeby.

Co więcej, emulacji procesorów wielordzeniowych może zostać wykorzystana do wyko-

nywania eksperymentów, które normalnie byłyby niewykonalne. Idea ta polega na emulacji

wielu maszyn za pomocą jednej maszyny, która dysponuje wieloma rdzeniami. W ten sposób

skala eksperymentu może być znacznie większa niż pozwala na to dostępny sprzęt.

Dodatkowo, emulacja procesorów jest silnym atutem w kontekście badań nad aplikacjami

przeznaczonymi do pracy w środowiskach heterogenicznych. W tej pracy przedstawiono ist-

niejące metody dla odnoszące się do tego zagadnienia: CPU-Freq, CPU-Lim, CPU-Burn oraz

Fracas. Metody te poddane analizie okazały się niewystarczające i powstała potrzeba zapro-

jektowania nowych podejść. W ten sposób powstały dwie nowe propozycje: CPU-Gov oraz

CPU-Hogs. Pierwsza jest rozszerzeniem metody CPU-Freq, natomiast CPU-Hogs jest nowo-

czesną implementacją klasycznej techniki „spalania procesora”.

Wszystkie metody porównano i poddano testom. Pokazano, że istniejące metody rze-

czywiście nie mogą być wykorzystane w przypadku ogólnego problemu emulacji procesorów

wielordzeniowych. Z drugiej strony, nowe metody okazały się o wiele lepsze, zarówno jako-

ściowo (zachowanie jest zgodne z oczekiwaniami), jak i ilościowo (wyniki emulacji są stabil-

niejsze).

Kierunki badawcze

Jako bezpośrednią kontynuację badań przedstawionych w tej pracy, należałoby przete-

stować wszystkie zaprezentowane metody w sposób inny niż tylko za pomocą mikro-testów.

Testom opartym na samych mikro-testach można zarzucić to, że dają tylko zawężony obraz

całości, gdyż nie uwzględniają sytuacji praktycznych.

Równie ważna jak emulacja prędkości procesora wydaje się być emulacja prędkości pa-

mięci operacyjnej. Może to być bardzo istotne w przypadku pewnych zastosowań, zwłaszcza

w świetlne coraz bardziej popularnych systemów NUMA (Non Uniform Memory Access).

Chociaż ta praca skupiła się na emulacji procesora w kontekście jego wielordzeniowości,

równie dobrze można rozważać emulację innych cech procesorów. Emulacja pamięci pod-

ręcznych procesora wydaje się być szczególnie interesująca.
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