Master's thesis

On the twin prime conjecture

Hipoteza o liczbach pierwszych bliźniaczych

Tomasz Buchert

Supervisor
prof. dr hab. Wojciech Gajda

Poznań 2011
Oświadczenie

Oświadczam również, że egzemplarz pracy dyplomowej w formie wydruku komputerowego jest zgodny z egzemplarzem pracy dyplomowej w formie elektronicznej.

Jednocześnie przyjmuję do wiadomości, że gdyby powyższe oświadczenie okazało się nieprawdziwe, decyzja o wydaniu mi dyplomu zostanie cofnięta.
Contents

1 Introduction 1
 1.1 Prime numbers 1
 1.2 The goal and structure of the thesis 3
 1.3 Notation 4
 1.4 References 4

2 Prime numbers 5
 2.1 Basic theorems 5
 2.2 Mertens’ theorems 6
 2.3 Prime Number Theorem 15
 2.4 Summary 15

3 Twin primes 16
 3.1 Twin Prime Conjecture 16
 Introduction 16
 Related problems 19
 Goldbach's Conjecture 19
 de Polignac's Conjecture 19
 k-tuple conjecture 21
 Small prime gaps 21
 Dickson's Conjecture 22
 3.2 Characterization of twin primes 23
 Characterization by congruence relations 23
 Characterization by multiplicative functions 25
 3.3 Summary 29

4 Prime sieving algorithms 30
 4.1 Sieve of Eratosthenes 30
 4.2 Sieve of Sundaram 33
 4.3 Sieve of Pritchard 34
 4.4 Sieve of Atkin 35
 4.5 Possible improvements 40
 Wheel data structure 41
Chapter 1

Introduction

1.1 Prime numbers

The prime numbers are mysterious objects. First few of them are

\[2, 3, 5, 7, 11, 13, 17, 19, 23, 29, \ldots\]

In Carl Sagan’s novel Contact, the extraterrestrial race used them to write a message for humans, a message that was easily distinguishable from random noise and was a sign of intelligence. It seems that the prime numbers are universal objects, an idea that must come to minds of sufficiently intelligent beings. Also, we do not know any natural, physical phenomena generating prime numbers. At first, there is no apparent structure in the prime numbers. They seem to appear in a random fashion, constantly popping out from the natural numbers. It is not even known beforehand, if there are infinitely many of them. Of course, if the set of prime numbers would be finite, they probably would not be interesting anymore. Fortunately we know that this is not the case.

There are deep patterns in the behavior of prime numbers, patterns very intricate and subtle. They become apparent when we stop to look at each of them separately, but start to see the prime numbers as a whole entity. Then the patterns emerge in a fruitful process: the number of primes below a given bound seems to be a conceivable function, the average number of divisors and prime divisors seems to be not random after all, and so on. Instantly, the prime numbers show a deep connection to the mathematical analysis, theory of probability, topology and other fields in mathematics.

Until very recently, the number theory was considered only a pure branch of mathematics, with virtually no practical application in the real life. It is Hardy who said in his A Mathematician’s Apology: “No one has yet discovered any war-like purpose to be served by the theory of numbers or relativity, and it seems unlikely that anyone will do so for many years.” A sensible statement for a pacifist, but, as we know now, this turned out to be wrong. The number theory is prac-
tical: every day millions of people use RSA encryption scheme and complicated ciphers without even knowing about it. Finally, probably to Hardy’s despair, the number theory found it’s way to the military too.

People who approach the number theory for the first time, may be startled how simple the problems seem to be. For example, one may ask what is difficult in the following problem: find positive integers x, y, z and $n \geq 3$, such that

$$x^n + y^n = z^n.$$

Of course, such problems only seem to be simple. The history has proven that the problem above is tremendously difficult and was tantalizing the mathematical community for few centuries. As we know, only in 1995 Andrew Wiles proved that there are no numbers satisfying the equation above. It’s rather common knowledge that short questions (e.g., Does God exist? What is love?) may have complicated answers or no satisfactory answer at all. Yet, people tend to think that in this particular case it is not true, and for that reason Fermat’s Last Theorem was attracting so many amateurs (Fermat himself was a successful, yet not professional mathematician).

There is no way to distinguish hard problems from the easy ones. As we know, the equation

$$x^2 + y^2 = z^2$$

was solved in antiquity, just like the fact that the number of primes is infinite. But we may ask more questions: how many primes are there below a certain number, are there infinitely many prime numbers in arithmetical progressions, are there infinitely many pairs of primes whose difference is exactly two? The first two questions are already answered, the last one remains unsolved and we will talk about it later. The novelty of the approach to these problems was to use the complex analysis, a field of mathematics normally not attributed to the number theory. Probably the most famous child that this marriage gave birth to is the Riemann Hypothesis. It asks if all the non-trivial complex zeros of the Riemann Zeta Function lie on a, so called, critical line. This question seems to be more complicated than the statement of Fermat’s Last Theorem. Also, there is no obvious connection with other number theory problems. However, the positive answer to the Riemann Hypothesis would change the number theory and mathematics as we know it.

The third problem above, i.e., are there infinitely many pairs of primes whose difference is exactly 2, is known as the Twin Prime Conjecture. The first few twin prime pairs are

$$(3, 5), (5, 7), (11, 13), (17, 19), \ldots$$

There is a strong empirical and heuristic evidence, as we will see, that this conjecture is true. One must be careful, however, to not become biased by it. The Mertens’ Conjecture postulated that

$$\left| \sum_{k=1}^{n} \mu(k) \right| < \sqrt{n}$$
for any n. This claim has been checked for $n < 10^{14}$, but an indirect proof showed that it is false. Interestingly, the proof of Mertens’ Conjecture would imply Riemann Hypothesis.

The Twin Prime Conjecture is possibly the most basic question one may ask, after they are satisfied with the Prime Number Theorem. There are probably no direct, practical conclusions that can be drawn from the Twin Prime Conjecture. But, just as was in the case of Fermat’s Last Theorem, research toward the unproven conjecture usually yields some additional understanding and tools that can be used in other situations. The Twin Prime Conjecture already spawned a modern tool of combinatorial and analytic number theory – the sieve theory.

The sieve theory was established at the beginning of the 20th century as a simple method to count prime numbers in intervals. Today it is a powerful tool to approach problems related to the Twin Prime Conjecture, e.g., Goldbach’s Conjecture. It was already used to prove countless partial results supporting many conjectures and apparently there is much more for sieves to do.

Why is that so, that the Twin Prime Conjecture resists any attempts to prove it? There is a fundamental difference between the question about the infinitude of prime numbers and the infinitude of twin prime pairs. The latter one involves not only multiplicative properties of numbers, but also additive properties. These two branches of number theory have numerous books dedicated to each of them separately. The history shows that the most difficult problems are those, which involve both domains.

It is a shame that the truth about such basic facts is hidden from us. Hopefully, one day we will understand the primes or, as Paul Erdős once said: “It will be another million years, at least, before we understand the primes.”

1.2 The goal and structure of the thesis

The main goal of this work is to present the current state of knowledge about the Twin Prime Conjecture and prime sieving algorithms – the only practical way to compute Brun’s constant.

In the Chapter 2, we discuss and prove some important theorems on the prime numbers as they will be used throughout this work.

The Chapter 3 is dedicated to the description of the current knowledge about the twin prime numbers and related problems. We also show few important ways to characterize the twin prime pairs, and we simplify and generalize slightly some original proofs (Theorem 17).

In the next chapter, i.e., the Chapter 4, the exposition of the most important prime sieving algorithms is given. We prove the correctness of presented algorithms, compute their complexity and also deduce theoretical bounds on the complexity of any sieving algorithm. We also present an elementary method to prove two theorems used by Atkin’s Sieve (Theorems 20 and 23).
In the Chapter 5, we introduce basic sieve methods, in particular, we consider the sieve of Brun. The goal of this chapter is to show the famous theorem of Brun about sum of reciprocals of twin primes.

In the penultimate chapter, the Chapter 6, we present a result of computation performed to obtain values of constants related to the Twin Prime Conjecture. In particular we show how fast convergent series for the twin prime constant can be obtained and we compute the twin prime constant to 15000 decimal digits. To our knowledge, this is the most precise computation so far.

The last chapter summarizes and concludes the whole thesis.

1.3 Notation

We mostly use the standard mathematical notation, but there are some exceptions. Throughout the thesis we use “log” symbol for the natural logarithm. We also use Landau’s notation of “big O” and “small o”. Moreover, to shorten the notation, if the sum is over p, then this implicitly means that the sum is over prime numbers. Therefore

$$\sum_{p \leq x} 1 = \sum_{p \in P} 1,$$

where P is the set of prime numbers. Additional notation may be introduced when needed.

1.4 References

The work presented in this thesis would not be possible without help of the literature.

The Chapter 2 is mostly backed up by [2] and other classical positions on the number theory. Some proofs are taken from the works of other authors, e.g., the proof of Theorem 1 by Erdős ([16]).

The Chapter 3 is based on publications concerning the Twin Prime Conjecture, in particular [23] and [41]. The part about related problems is a compilation of various sources ([12], [22], [41], among others), with figures computed in Sage ([39]). The current computational records were taken from [6] and [14]. The ways to characterize the twin primes come from many publications: [8], [29], [30] and [36].

The prime sieving algorithms in the Chapter 4 are presented in the literature on the computational aspects of the number theory, most notably in [11] and [41]. The algorithms themselves were presented also in [3], [33] and [34]. A big part of the discussion is backed up by additional sources ([13], [15], [37], [42]).

The Chapter 5 follows mostly [9], [24] and [40], but is built around [5].

The computation of the related constants in the Chapter 6 required the following software: [4], [20] and [28]. To obtain a feasible formula for the twin prime constant, [17] was used.
Chapter 2

Prime numbers

2.1 Basic theorems

It is a common knowledge that there are infinitely many prime numbers. We present a beautiful proof of this fact, a proof that actually shows that the series over all primes

\[\sum \frac{1}{p} \]

diverges. Hence there must be an infinitude of primes.

This proof was published in an article of P. Erdős from 1938 ([16]) and is considered to be a “proof from the book” ([1]).

Theorem 1 (Infinitude of primes). The series \(\mathcal{P} \) - set of all prime numbers

\[\sum_{p \in \mathcal{P}} \frac{1}{p} \quad (2.1) \]

diverges.

Proof. Let \(p_i \) be the \(i \)-th prime number. Assume that \((2.1) \) converges. Thus, there must be an index \(k \), such that

\[\sum_{i \ge k+1} \frac{1}{p_i} < \frac{1}{2} \quad (2.2) \]

Let \(N \) be an arbitrary natural number. Let \(N_1 \) be a number of positive integers \(n \le N \) divisible only by primes \(p_1, p_2, \ldots, p_k \), and \(N_2 \) be a number of positive integers divisible by at least one \(p_i \) where \(i > k \). Clearly, \(N_1 + N_2 = N \).

Let’s estimate \(N_2 \). There are exactly \[\left\lfloor \frac{N}{p_i} \right\rfloor \] numbers \(n \le N \) divisible by \(p \). This, together with \((2.2) \), gives

\[N_2 \le \sum_{i \ge k+1} \left\lfloor \frac{N}{p_i} \right\rfloor \le N \sum_{i \ge k+1} \frac{1}{p_i} < \frac{N}{2}, \]
as we count some numbers more than once.

Let's take a look at N_1. Every number $n \leq N$ can be written as a product $n = a_n b_n^2$ where a_n is squarefree. If n is only divisible by primes up to p_k, we may have at most 2^k different squarefree parts of n (we may either include or not include each prime). If it comes to the square part, we note that $b_n \leq \sqrt{n} \leq \sqrt{N}$. Therefore, there are at most $2^k \sqrt{N}$ such numbers, and we have $N_1 \leq 2^k \sqrt{N}$.

But if we take $N = 2^{2k+2}$, this leads to

$$N = N_1 + N_2 < \frac{N}{2} + 2^k \sqrt{N} = 2^{2k+1} + 2^{2k+1} = N,$$

a contradiction that finishes the proof.

Knowing the divergence of this series is not enough. We want to know precisely what is the character of this divergence, i.e., how it behaves asymptotically.

2.2 Mertens' theorems

The goal of this section is to prove the following famous theorem:

Theorem 2 (Mertens' Second Theorem). For $x \geq 2$ we have

$$\sum_{p \leq x} \frac{1}{p} = \log \log x + B + O \left(\frac{1}{\log x} \right)$$

for some constant B.

Let's start with some basic definitions.

Definition (p-adic valuation). Let p be a prime and n a positive integer. Then

$$v_p(n) = k$$

if and only if $p^k | n$, but $p^{k+1} \nmid n$.

It is easy to see that $v_p(nm) = v_p(n) + v_p(m)$. Also if $v_p(n) = k$ then $n = p^k m$ where $p \nmid m$. In that case we will write $p^k \parallel n$.

To obtain a value of $v_p(n!)$ we will prove

Theorem 3 (Legendre's Theorem). Let p be a prime and n be a positive number. Then

$$v_p(n!) = \sum_{i \geq 1} \left\lfloor \frac{n}{p^i} \right\rfloor.$$

(2.5)
\[
\nu_p(n!) = \sum_{1 \leq i \leq n} \nu_p(i) = \sum_{j=1}^{\lfloor \log p \rfloor} \frac{n}{p^j} = \sum_{j=1}^{\lfloor \log p \rfloor} \frac{n}{p^j+1} = \sum_{j=1}^{\lfloor \log p \rfloor} \frac{n}{p^j} - \sum_{j=1}^{\lfloor \log p \rfloor} \frac{n}{p^j+1} = \frac{n}{p^j} + \sum_{j=2}^{\lfloor \log p \rfloor} \frac{n}{p^j} = \sum_{j=1}^{\lfloor \log p \rfloor} \frac{n}{p^j}.
\]

It will be convenient to also define the following function:

Definition (The first Chebyshev function). For \(x \geq 1 \), we define the first Chebyshev function as

\[
\theta(x) = \sum_{p \leq x} \log p. \tag{2.6}
\]

P. L. Chebyshev proved in 1850 the famous Bertrand’s postulate.

Theorem 4 (Bertrand’s postulate, Chebyshev’s Theorem). For every \(n > 1 \) there exists a prime number \(p \), such that

\[
n < p < 2n.
\]

With sufficient bounds on the function \(\theta \), one can get a simple and elementary proof of Bertrand’s postulate ([1] pages 7–10)). We will prove the following fact needed in our discourse.

Theorem 5 (Bounds on the first Chebyshev function). There exist positive constants \(c_1 \) and \(c_2 \), such that for \(x \geq 4 \)

\[
c_1 \leq \frac{\theta(x)}{x} \leq c_2. \tag{2.7}
\]

In particular

\[
\theta(x) = O(x).
\]

Remark. Prime Number Theorem (Theorem [13]) is equivalent to the fact that

\[
\lim_{x \to \infty} \frac{\theta(x)}{x} = 1.
\]
Proof of Theorem 5. Let’s start with a clever observation about \(\binom{2n}{n} \). Namely, for every prime \(p \), such that \(n < p \leq 2n \), \(p \mid \binom{2n}{n} = \binom{2n}{n}! \) since it is present in the numerator, but absent from the denominator. Hence

\[
\prod_{n < p \leq 2n} p \leq \binom{2n}{n} \leq (1 + 1)^{2n} = 4^n
\]
or, in terms of the function \(\theta \),

\[
\theta(2n) - \theta(n) = \log \prod_{n < p \leq 2n} p \leq n \log 4.
\]

Let’s set an integer \(k \), such that \(2^k - 1 < x \leq 2^k \). This leads to

\[
\theta(x) \leq \theta(2^k) = \sum_{0 \leq j < k-1} \left(\theta(2^{j+1}) - \theta(2^j) \right) \leq \log 4 \sum_{0 \leq j < k-1} 2^j \leq 2^k \log 4 \leq (2 \log 4) x.
\]
(2.8)

Therefore, in (2.7) we can take \(c_2 = 2 \log 4 \).

To prove the lower bound, we observe that for \(n \geq 1 \) we have

\[
2^n \leq \binom{2n}{n},
\]
(2.9)
a fact that can be verified by a simple induction. Moreover, from Theorem 3 we deduce that

\[
\log \binom{2n}{n} = \sum_{p \leq 2n} \left(\left\lfloor \frac{2n}{p^j} \right\rfloor - 2 \left\lfloor \frac{n}{p^j} \right\rfloor \right) \log p.
\]
(2.10)

Hence, (2.9) and (2.10) together give

\[
n \log 2 \leq \sum_{p \leq 2n} \left(\left\lfloor \frac{2n}{p^j} \right\rfloor - 2 \left\lfloor \frac{n}{p^j} \right\rfloor \right) \log p.
\]

At this point, we introduce an integer \(\alpha \geq 1 \) and split the last sum to obtain

\[
\sum_{p \leq 2n} \sum_{1 \leq j \leq \alpha} \left(\left\lfloor \frac{2n}{p^j} \right\rfloor - 2 \left\lfloor \frac{n}{p^j} \right\rfloor \right) \log p \geq
\]
\[
\geq n \log 2 - \sum_{p \leq 2n} \sum_{j \geq \alpha+1} \left(\left\lfloor \frac{2n}{p^j} \right\rfloor - 2 \left\lfloor \frac{n}{p^j} \right\rfloor \right) \log p.
\]
(2.11)

The observation that \(\left\lfloor |2x| - 2 \lfloor x \rfloor \right\rfloor \) is either 0 or 1 permits us to write

\[
\sum_{p \leq 2n} \sum_{1 \leq j \leq \alpha} \left(\left\lfloor \frac{2n}{p^j} \right\rfloor - 2 \left\lfloor \frac{n}{p^j} \right\rfloor \right) \log p \leq \alpha \sum_{p \leq 2n} \log p = \alpha \cdot \log(2n)
\]

8
and (2.11) becomes
\[\alpha \cdot \vartheta(2n) \geq n \log 2 - \sum_{p \leq 2n} \sum_{j \geq a+1} \left(\left\lfloor \frac{2n}{p^j} \right\rfloor - 2 \left\lfloor \frac{n}{p^j} \right\rfloor \right) \log p. \] (2.12)

Let's bound the sum on the right-hand side of the equation above. We have
\[\sum_{p \leq 2n} \sum_{j \geq a+1} \left(\left\lfloor \frac{2n}{p^j} \right\rfloor - 2 \left\lfloor \frac{n}{p^j} \right\rfloor \right) \log p \leq 2n \sum_{p \leq 2n} \sum_{j \geq a+1} \frac{\log p}{p^j} \leq 2n \sum_{p \leq 2n} \frac{p}{p^j} = 2n \sum_{p \leq 2n} \frac{1}{p^a - p^{a-1}} \leq 4n \sum_{p \leq 2n} \frac{1}{p^a}. \]

Consequently
\[4n \sum_{p \leq 2n} \frac{1}{p^a} \leq 4n \sum_{k \geq 2} \frac{1}{k^a} \leq 4n \int_{1}^{\infty} \frac{1}{t^a} \, dt = \frac{4n}{a-1}. \]

Plugging this back into (2.12) gives
\[\alpha \cdot \vartheta(2n) \geq n \log 2 - \frac{4n}{\alpha-1} = n \left(\log 2 - \frac{4}{\alpha-1} \right). \]

Finally, if we take \(\alpha = 7 \), then
\[\vartheta(2n) \geq \frac{2n}{1000}. \] (2.13)

To finish the proof, take any positive real \(x \geq 4 \). There exists an even integer \(2m \), such that \(x \geq 2m \), but \(x - 2m < 2 \). Using (2.13) we obtain
\[\vartheta(x) \geq \vartheta(2m) \geq \frac{2m}{1000} > \frac{x - 2}{1000}. \]

However, since \(x \geq 4 \) or \(x - 2 \geq \frac{x}{2} \), we get
\[\vartheta(x) > \frac{x}{2000}. \] (2.14)

Hence, if we take \(c_1 = \frac{1}{2000} \), the theorem is proven. \(\square \)

Before going further, let's introduce a basic tool used to work with sums involving prime numbers. We follow [2, page 77].

Theorem 6 (Abel's summation formula). Let \(a(n) \) be a function from the set of integers to the set of complex numbers. Let
\[A(x) = \sum_{n \leq x} a(n), \]
where \(A(x) = 0 \) if \(x < 1 \). If \(f \) has continuous derivative on the interval \([y, x]\), where \(0 < y < x \), then we have
\[
\sum_{y < n \leq x} a(n) f(n) = A(x) f(x) - A(y) f(y) - \int_y^x A(t) f'(t) \, dt. \tag{2.15}
\]

Proof. The proof is easy if one uses Riemann-Stieltjes integration. We see that \(A(x) \) is a step function with jumps \(a(n) \) at every integer value in the sum \(\text{(2.15)} \). Thus we can write
\[
\sum_{y < n \leq x} a(n) f(n) = \int_y^x f(t) \, dA(t)
\]
and integrate by parts to obtain
\[
\sum_{y < n \leq x} a(n) f(n) = [f(t) A(t)]_y^x - \int_y^x A(t) \, df(t) = \]
\[
= f(x) A(x) - f(y) A(y) - \int_y^x A(t) f'(t) \, dt. \tag{\text{2.15}}
\]

Using Abel’s summation formula it is easy to obtain

Theorem 7 (Euler’s summation formula). If \(f \) has continuous derivative on the interval \([y, x]\), for \(0 < y < x \), then
\[
\sum_{y < n \leq x} f(n) = \int_y^x f(t) \, dt + \int_y^x \{t\} f'(t) \, dt + \{y\} f(y) - \{x\} f(x), \tag{2.16}
\]
where \(\{x\} \) stands for the fractional part of \(x \), i.e., \(\{x\} = x - \lfloor x \rfloor \).

Proof. Take \(a(n) = 1 \) (hence \(A(x) = \lfloor x \rfloor \)). Using the formula for the integration by parts, i.e.,
\[
\int_y^x f'(t) \, dt = xf(x) - yf(y) - \int_y^x f(t) \, dt,
\]
and by a proper rearrangement of terms, the result is obtained. \(\square \)

We will use this formula to obtain a well known asymptotics for the harmonic series. We have

Theorem 8 (Asymptotic formula for the harmonic series).
\[
\sum_{1 \leq n \leq x} \frac{1}{n} = \log x + \gamma + O\left(\frac{1}{x}\right), \tag{2.17}
\]
where
\[
\gamma \approx 0.5772156649015329
\]
is a constant, known as Euler-Mascheroni constant, Euler’s constant or simply – gamma constant.
Proof. We use Euler’s summation formula with \(f(t) = \frac{1}{t} \) and \(y = 1 \), to get

\[
\sum_{1 \leq n \leq x} \frac{1}{n} = \int_{1}^{x} \frac{1}{t} \, dt - \int_{1}^{x} \frac{\{t\}}{t^2} \, dt + 1 = \\
= \log x + \left(1 - \int_{1}^{\infty} \frac{\{t\}}{t^2} \, dt\right) + \int_{x}^{\infty} \frac{\{t\}}{t^2} \, dt = \\
= \log x + \left(1 - \int_{1}^{\infty} \frac{\{t\}}{t^2} \, dt\right) + O\left(\int_{x}^{\infty} \frac{1}{t^2} \, dt\right) = \\
= \log x + \left(1 - \int_{1}^{\infty} \frac{\{t\}}{t^2} \, dt\right) + O\left(\frac{1}{x}\right).
\]

If we set

\[
\gamma = 1 - \int_{1}^{\infty} \frac{\{t\}}{t^2},
\]

the result follows. \(\square \)

Using the previous theorem, we can redefine \(\gamma \) as:

\[
\gamma = \lim_{x \to \infty} \left(\log x - \sum_{1 \leq n \leq x} \frac{1}{n}\right)
\]

One of the greatest unsolved problems in mathematics asks if this constant is rational or not. Empirical data suggests that the latter is true: if \(\gamma = \frac{a}{b} \), then it is known that \(b \) must have at least 242080 digits ([26, page 97]).

We will also need a weak version of Stirling’s approximation formula.

Theorem 9 (Stirling’s approximation formula).

\[
\log(n!) = n \log n + O(n). \tag{2.18}
\]

Proof. Using Euler’s summation formula with \(f(x) = \log x \) and \(y = 1 \), we will get

\[
\sum_{1 \leq k \leq n} \log k = \sum_{1 \leq k \leq n} \log k = \int_{1}^{n} \log t + \int_{1}^{n} \frac{\{t\}}{t} \, dt = \\
= \left[t(\log t - 1)\right]_{1}^{n} + O\left(\int_{1}^{n} \frac{1}{t} \, dt\right) = \\
= n \log n - n + O(\log n) = n \log n + O(n). \ \ \ \ \ \square
\]

We are ready to prove the following

Theorem 10 (Mertens’ First Theorem). For \(x \geq 2 \) we have

\[
\sum_{p \leq x} \frac{\log p}{p} = \log x + O(1). \tag{2.19}
\]
Proof. We write

\[n! = \sum_{p \leq n} p^{v_p(n!)} \]

or, equivalently

\[\log(n!) = \sum_{p \leq n} v_p(n!) \log p. \]

Now, from Theorem 3 we get

\[
\log(n!) = \sum_{p \leq n} \left\lfloor \frac{n}{p} \right\rfloor \log p + O\left(n \sum_{p \leq n} \sum_{k \geq 1} \frac{\log p}{p^k} \right) = \sum_{p \leq n} \left\lfloor \frac{n}{p} \right\rfloor \log p + O\left(n \sum_{p \leq n} \frac{\log p}{p^2} \right),
\]

since \(\sum_{k \geq 2} \frac{\log p}{p^k} = \frac{\log p}{p^2} \leq \frac{2 \log p}{p^2} \).

Moreover, \(\sum_{k \geq 1} \frac{\log k}{k^2} \) converges (e.g., by the Cauchy test of convergence) and we get

\[
\log(n!) = \sum_{p \leq n} \left\lfloor \frac{n}{p} \right\rfloor \log p + O(n) = \sum_{p \leq n} \frac{n}{p} \log p + O\left(\sum_{p \leq n} \log p \right) + O(n).
\]

Application of Theorem 5 gives us

\[\log(n!) = \sum_{p \leq n} \frac{n}{p} \log p + O(n). \]

However, from Theorem 9 we already know that

\[\log(n!) = n \log n + O(n) \]

and we obtain

\[\sum_{p \leq n} \frac{n}{p} \log p = n \log n + O(n). \]

If we divide it by \(n \), we will finally obtain

\[\sum_{p \leq n} \frac{\log p}{p} = \log n + O(1). \]

To finish the proof we have to consider any real \(x \geq 2 \). But then

\[
\sum_{p \leq x} \frac{\log p}{p} = \sum_{p \leq [x]} \frac{\log p}{p} = \log [x] + O(1) = \log x + O(1),
\]

since from the l’Hôpital’s rule the difference \(\log [x] - \log x \) converges to zero as \(x \) approaches infinity. \(\square \)
After preparing all the necessary tools we are now ready to prove Theorem 2.

Proof of Theorem 2. We will use Abel’s summation formula with \(f(x) = \frac{1}{\log x} \) and
\[
a(n) = \begin{cases} \log \frac{n}{\pi}, & \text{if } n \text{ is a prime,} \\ 0, & \text{otherwise.} \end{cases}
\]
Then
\[
A(x) = \sum_{p \leq x} \frac{\log p}{p}
\]
and
\[
\sum_{n \leq x} a(n) f(n) = \sum_{p \leq x} \frac{1}{p}.
\]
So we have
\[
\sum_{p \leq x} \frac{1}{p} = A(x) + \int_{2}^{x} \frac{A(t)}{t \log t^2} \, dt.
\]
But from Theorem 10 we know that \(A(x) = \log x + O(1) \). We write \(A(x) = \log x + R(x) \). Therefore
\[
\sum_{p \leq x} \frac{1}{p} = \frac{\log x + R(x)}{\log x} + \int_{2}^{x} \frac{\log t + R(t)}{t \log t^2} \, dt =
\]
\[
= 1 + \frac{R(x)}{\log x} + \int_{2}^{x} \frac{1}{t \log t} \, dt + \int_{2}^{x} \frac{R(t)}{t \log t^2} \, dt =
\]
\[
= 1 + \frac{R(x)}{\log x} + \log \log x - \log \log 2 + \int_{2}^{\infty} \frac{R(t)}{t \log t^2} \, dt - \int_{x}^{\infty} \frac{R(t)}{t \log t^2} \, dt =
\]
\[
= \log \log x + B + \frac{R(x)}{\log x} - \int_{x}^{\infty} \frac{R(t)}{t \log t^2} \, dt =
\]
\[
= \log \log x + B + O \left(\frac{1}{\log x} - \int_{x}^{\infty} \frac{1}{t \log t^2} \right) = \log \log x + B + O \left(\frac{1}{\log x} \right),
\]
where
\[
B = 1 - \log \log 2 + \int_{2}^{\infty} \frac{R(t)}{t \log t^2} \, dt.
\]

The constant \(B \) is called the Mertens constant (or Meissel–Mertens constant) and has the value
\[
0.2614972128476427837554268386086958590515666482612.
\]
A formula for \(B \) with a very good numerical convergence is given by (17)
\[
B = \gamma + \sum_{k \geq 2} \frac{\mu(k)}{k} \log \zeta(k),
\]
where \(\gamma \) is the Euler-Mascheroni constant, \(\mu \) is the Möbius function and \(\zeta \) is the Riemann Zeta function.

Mertens also proved the following, beautiful
Theorem 11 (Mertens’ Third Theorem).

\[
\prod_{p \leq x} \left(1 - \frac{1}{p}\right) \sim e^{-\gamma} \frac{\log x}{x},
\]

where \(e \) is Napier’s constant and \(\gamma \) is the Euler-Mascheroni constant.

We will not prove this theorem here, because we will only need a much weaker version. Instead, we will prove

Theorem 12 (Weak Mertens’ Third Theorem). There exist positive constants \(x_0, c_1 \) and \(c_2 \), such that for \(x > x_0 \)

\[
\frac{c_1}{\log x} \leq \prod_{p \leq x} \left(1 - \frac{1}{p}\right) \leq \frac{c_2}{\log x}. \tag{2.20}
\]

In particular

\[
\prod_{p \leq x} \left(1 - \frac{1}{p}\right) = O\left(\frac{1}{\log x}\right).
\]

Proof. On the one hand, we have

\[
\prod_{p \leq x} \frac{1}{1 - \frac{1}{p}} = \prod_{p \leq x} \left(1 + \frac{1}{p} + \frac{1}{p^2} + \ldots\right) = \sum_{1 \leq k \leq x} \frac{1}{k} + \sum_{n \geq 1} \frac{1}{n} \left(\sum_{1 \leq k \leq x} \frac{1}{k}\right) = \log x + O(1), \tag{2.21}
\]

where the sum \(\sum^\prime \) is over positive integers divisible only by the primes not bigger than \(x \). Hence, if we divide (2.21) by \(\log x \), we will get

\[
\frac{1}{\log x} \prod_{p \leq x} \frac{1}{1 - \frac{1}{p}} \geq 1 + O\left(\frac{1}{\log x}\right) \geq \frac{1}{2}
\]

for \(x \) large enough. Thus (2.20) is bounded from above, if we take \(c_2 = 2 \).

On the other hand we have

\[
\prod_{p \leq x} \frac{1}{p - 1} = \prod_{p \leq x} \left(1 + \frac{1}{p - 1}\right) \leq \prod_{p \leq x} e^{\frac{1}{p - 1}} = e^{\sum_{p \leq x} \frac{1}{p - 1}}. \tag{2.22}
\]

But since

\[
\sum_{p \leq x} \frac{1}{p - 1} - \sum_{p \leq x} \frac{1}{p} = \sum_{p \leq x} \frac{1}{p(p - 1)} = O(1),
\]

we get from Theorem 2 that

\[
\sum_{p \leq x} \frac{1}{p - 1} = \log \log x + O(1).
\]
Plugging this into (2.22) gives
\[
\prod_{p \leq x} \frac{1}{1 - \frac{1}{p}} \leq e^{\log x + O(1)} = O(\log x)
\]
and so
\[
\frac{1}{\log x} \prod_{p \leq x} \frac{1}{1 - \frac{1}{p}} \leq O(1).
\]
proving that (2.20) is bounded from below (for \(x \) large enough). This concludes the proof.

\[\square\]

2.3 Prime Number Theorem

Finally, we have the celebrated Prime Number Theorem, first proved in 1896 by J. Hadamard and C. J. de la Vallée-Poussin, independently. The “elementary” proof is attributed to both A. Selberg and P. Erdős, who proved it by similar methods in 1949.

Theorem 13 (Prime Number Theorem). If we let
\[
\pi(x) = \sum_{p \leq x} 1,
\]
then we have
\[
\pi(x) \sim \frac{x}{\log x}.
\]

We will not prove this essential fact. The reader may be interested in the ingenious and intricate proof given by Donald J. Newman in [31].

2.4 Summary

In this chapter, we formulated and proved few important theorems on the prime numbers. They will be needed later to prove important facts about twin primes and prime sieving algorithms. In particular we learned that the series
\[
\sum_{p} \frac{1}{p}
\]
is divergent, just as the harmonic series over natural numbers. This will contrast with the fact that the similar series for the twin primes is convergent.
Twin primes

3.1 Twin Prime Conjecture

Introduction

In 1912, E. Landau presented four problems in the number theory that he considered to be very difficult:

1. Goldbach’s Conjecture: Every positive even integer is a sum of two primes.
2. Twin Prime Conjecture: 2 can be written as a difference of two primes in infinitely many ways.
3. Legendre’s Conjecture: There is always a prime between n^2 and $(n + 1)^2$.
4. There are infinitely many primes of the form $n^2 + 1$.

All these problems remain open, proving that Landau was right. The first three of them are related, they concern primes in some intervals. We will concentrate on the second problem, i.e.,

Conjecture 1 (Twin Prime Conjecture). There are infinitely many twin primes, i.e., numbers p and $p + 2$, such that both of them are primes.

The first pairs of twin primes are:

(3, 5), (5, 7), (11, 13), (17, 19), ...

with 5 being the only prime being in two pairs. Let’s denote by $\pi_2(x)$ a number of primes p, not bigger than x, such that $p + 2$ is also a prime. We therefore have:

$\pi_2(10) = 2,$

$\pi_2(11) = 3,$

$\pi_2(17) = 4,$

........
Table 3.1: The values of $\pi_2(x)$ compared.

<table>
<thead>
<tr>
<th>x</th>
<th>$\pi_2(x)$</th>
<th>$2C_2 x / \log^2 x$</th>
<th>$\text{Li}_2(x)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>10^1</td>
<td>2</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>10^2</td>
<td>8</td>
<td>6</td>
<td>14</td>
</tr>
<tr>
<td>10^3</td>
<td>35</td>
<td>28</td>
<td>46</td>
</tr>
<tr>
<td>10^4</td>
<td>205</td>
<td>156</td>
<td>214</td>
</tr>
<tr>
<td>10^5</td>
<td>1224</td>
<td>996</td>
<td>1249</td>
</tr>
<tr>
<td>10^6</td>
<td>8169</td>
<td>6917</td>
<td>8248</td>
</tr>
<tr>
<td>10^7</td>
<td>58980</td>
<td>50822</td>
<td>58754</td>
</tr>
<tr>
<td>10^8</td>
<td>440312</td>
<td>389107</td>
<td>440368</td>
</tr>
<tr>
<td>10^9</td>
<td>3424506</td>
<td>3074426</td>
<td>3425308</td>
</tr>
<tr>
<td>10^{10}</td>
<td>27412679</td>
<td>24902848</td>
<td>27411417</td>
</tr>
<tr>
<td>10^{11}</td>
<td>224376048</td>
<td>205808662</td>
<td>224368865</td>
</tr>
<tr>
<td>10^{12}</td>
<td>1870585220</td>
<td>1729364450</td>
<td>1870559867</td>
</tr>
<tr>
<td>10^{13}</td>
<td>15834664872</td>
<td>14735413064</td>
<td>15834598305</td>
</tr>
</tbody>
</table>

The Table 3.1 contains values of π_2 for some powers of 10.

Whereas there is no proof that there are infinitely many twin primes, the empirical data on the function π_2 strongly suggest that this is indeed true. Hardy and Littlewood (1924) conjectured

Conjecture 2 (Strong Twin Prime Conjecture). Let

$$\text{Li}_2(x) = 2C_2 \int_2^x \frac{dt}{\log^2 t},$$

where

$$C_2 = \prod_{p \geq 3} \left(1 - \frac{1}{(p-1)^2}\right) \approx 1.320323632$$

is the so called twin prime constant. Then we have

$$\lim_{x \to \infty} \frac{\pi_2(x)}{\text{Li}_2(x)} = 1. \quad (3.1)$$

This fact would imply the infinitude of twin primes and also a simple asymptotic formula for $\pi_2(x)$, namely

$$\pi_2(x) \sim 2C_2 \frac{x}{\log^2 x},$$

which shows particular resemblance to the Prime Number Theorem (Theorem 13). Table 3.1 and Figure 3.1 show that this approximation is much worse than the representation by an integral. This resonates with the known fact that

$$\text{Li}(x) = \int_2^x \frac{dt}{\log t}$$
is a much better approximation to \(\pi(x) \) than
\[
\frac{x}{\log x},
\]
although both are asymptotically equal to \(\pi(x) \).

Where does \(C_2 \) come from? In [23] an intuitive, heuristic derivation is proposed and we present it below.

From the Prime Number Theorem (Theorem 13) we know that the probability of \(x \geq 3 \) being prime is roughly \(1/\log x \). The probability that \(x \) and \(x + 2 \) are primes at the same time is therefore \(1/\log^2 x \), assuming that both events are independent. But they are not completely independent – if \(x \) is a prime, then \(x + 2 \) is necessarily odd, for example. This doubles the probability of \(x + 2 \) being a prime.

On the other hand, for any odd prime \(p \), \(x \) will be not divisible by \(p \) with probability \(1 \), i.e., it will belong to one of \(p - 1 \) residue classes \((\mod p)\) with probability \(1/p \). As \(x \) and \(x + 2 \) cannot be in the same residue class, this changes the probability of \(x + 2 \) being a prime from \(1/p \) to \(1/(p + 1) \). Combining these two facts we obtain the probability of \(x \) and \(x + 2 \) being a twin prime pair:

\[
\frac{\pi_2(x)}{x} \approx \frac{1}{\log^2 x} \cdot 2 \prod_{p \geq 3} \left(\frac{p - 2}{p - 1} \right) \left(\frac{p - 1}{p} \right) = \frac{1}{\log^2 x} \cdot 2 \prod_{p \geq 3} \left(1 - \frac{1}{(p - 1)^2} \right) = \frac{2C_2}{\log^2 x}.
\]

Even though we don’t know whether Twin Prime Conjecture is true, we know some partial results.

In 1920, Viggo Brun showed that there exists a number \(x_0 \) (effectively computable), such that if \(x > x_0 \), then

\[
\pi_2(x) < \frac{100x}{\log^2 x}.
\]
This has been improved in 1966 by Bombieri and Davenport, who proved that
\[
\pi_2(x) \leq 8C_2 \frac{x}{\log^2 x} \left(1 + O\left(\frac{\log \log x}{\log x} \right) \right).
\]

The factor 8 above has been improved subsequently to 6.8325, but the Strong Twin Prime Conjecture requires it to be exactly 2.

Probably the greatest near-miss in proving the Twin Prime Conjecture is the theorem of Chen (Theorem 31).

There are interesting records related to twin primes. At the time of writing, the largest known twin prime pair is (6)

\[65516468355 \cdot 2^{333333} \pm 1.\]

Every number from this pair has 100355 decimal digits.

It is also known that (14)

\[\pi_2(2608 \cdot 10^{15}) = 2012314811498844.\]

Related problems

Goldbach’s Conjecture

Another famous unsolved problem in number theory is the Goldbach’s conjecture. One of its possible statements is

Conjecture 3 (The Extended Goldbach’s Conjecture). Let \(R(n)\) be the number of representations of an even positive integer \(n\) as a sum of two primes. Then

\[
R(n) \sim 2C_2 \prod_{p \mid n, p > 2} \left(\frac{p - 1}{p - 2} \right) \int_2^n \frac{dt}{\log^2 t} \sim 2C_2 \prod_{p \mid n, p > 2} \left(\frac{p - 1}{p - 2} \right) \frac{n}{\log^2 n}.
\]

See Figure 3.2 for a plot of \(R(n)\).

The surprising presence of twin prime constant \(C_2\) in the conjectured formula for \(R(n)\) suggests connection to the Twin Prime Conjecture. In fact, as discussed in Section 5.1 below, the methods used to attack one of these problems, usually yield results for the second as well.

de Polignac’s Conjecture

The conjecture stated in 1849 by de Polignac is

Conjecture 4 (de Polignac’s Conjecture). Let \(n\) be a positive even integer. Then \(n\) can be represented as a difference of two consecutive prime numbers in infinitely many ways. Stated differently: the number of prime gaps of size \(n\), i.e., pairs of consecutive prime numbers \(p_k\) and \(p_{k+1}\) with \(p_{k+1} - p_k = n\), is infinite.

Figure 3.3 presents plots of the number of prime gaps below some number \(x\), for different values of \(n\).

The special case with \(n = 2\) is the Twin Prime Conjecture.
Figure 3.2: Number of representations of an even n as sum of two primes (“Goldbach's Comet”). There is an evident “clustering” of integers that share the same prime factors, here presented with primes 3 and 5.

Figure 3.3: Number of prime gaps of size 2, 6, 10 and 14, such that the first prime is not greater than x (cf. Figure 3.4).
k-tuple conjecture

A very similar conjecture to de Polignac’s Conjecture was proposed by Hardy and Littlewood. Consider any set of numbers \((a_1, a_2, \ldots, a_k)\), called a constellation. We say that this constellation is admissible if it does not contain a complete set of residues modulo any prime number \(p\). For example, \((0,2)\) or \((0,2,6,8,12)\) are admissible, whereas \((0,2,4)\) is not. Note also, that we have only to check primes \(p \leq k\).

A prime \(k\)-tuple for any admissible constellation consists of \(k\) numbers \((b_1 + a_1, b_1 + a_2, \ldots, b_k + a_k)\), such that for every \(i \in \{1,2,\ldots,k\}\), \(a_i + b_i\) is a prime. Now the reason for admissibility is obvious – otherwise it would be possible for a tuple to contain at least one number divisible by some prime \(p\).

We may now formulate

Conjecture 5 (k-tuple conjecture). There exist infinitely many prime \(k\)-tuples for any admissible constellation.

It’s clear now that one can assume that \(a_1 = 0\).

The Twin Prime Conjecture is equivalent to the case of the constellation \((0,2)\). Furthermore, the prime pairs of the form \((p, p + 4)\) are called cousin primes and primes of the form \((p, p + 6)\) – sexy primes.

Hardy and Littlewood also conjectured asymptotic density for the number of primes \(p\) not greater than \(x\), such that \(p + n\) (for a fixed even \(n\)) is also a prime:

\[
\pi_n(x) \sim 2C_n \int_2^n \frac{dt}{\log^2 t} \sim 2C_n \frac{x}{\log^2 x},
\]

where

\[
C_n = C_2 \prod_{p \mid n} \frac{p - 1}{p - 2}
\]

and \(C_2\) is the twin prime constant. The formula suggests that the number of cousin primes is asymptotically the same as the number of twin primes \((C_4 = C_2\)).

This seems to be true and therefore \(\pi_4(x)\) is not shown in Figure[3,4] On the other hand, \(C_6 = 2C_2\), so the pairs of sexy primes should happen roughly two times more often than of size 2 or 4. This also seems to be true, as can be seen in Figure[3,4]

Small prime gaps

Let’s define

\[
\Delta = \liminf_{n \to \infty} \frac{p_{n+1} - p_n}{\log p_n}.
\]
Figure 3.4: Values of $\pi_2(x)$, $\pi_6(x)$, $\pi_{10}(x)$ and $\pi_{14}(x)$ (cf. Figure 3.3).

Then the necessary condition for the Twin Prime Conjecture to be true is $\Delta = 0$. Indeed, if there are infinitely many twin prime pairs, say $(q_n, q_n + 2)$, then

$$
\Delta = \liminf_{n \to \infty} \frac{p_{n+1} - p_n}{\log p_n} \\
\leq \liminf_{n \to \infty} \frac{q_{n+1} - q_n}{\log q_n} = \liminf_{n \to \infty} \frac{2}{\log q_n} = \lim_{n \to \infty} \frac{2}{\log q_n} = 0.
$$

The value of Δ was subject to many improvements over the time. However, in [21] it has been established that in fact $\Delta = 0$, strongly suggesting that the Twin Prime Conjecture is true.

As a side note, note that also

$$
\limsup_{n \to \infty} \frac{p_{n+1} - p_n}{\log p_n} = \infty,
$$

that is, large prime gaps also exist.

It is also conjectured (Cramér’s Conjecture) that

$$
p_{n+1} - p_n = O\left((\log p_n)^2 \right).
$$

and the numerical evidence suggests it may be true. This would also imply Legendre’s Conjecture: for sufficiently large n there would always be a prime between n^2 and $(n + 1)^2$.

Dickson’s Conjecture

In [12], a generalization of Dirichlet’s problem on the infinitude of primes in arithmetic progressions was presented. The problem is known as
Conjecture 6 (Dickson’s Conjecture). Let:

\[a_1 n + b_1, a_2 n + b_2, \ldots, a_k n + b_k \]

be a family of arithmetic progressions with \(a_i > 1 \). Unless there is a prime \(p \) that divides all above values for all \(n \), there exists infinitely many values of \(n \), such that all above numbers are prime.

When we take \(k = 1 \), then we obtain Dirichlet’s Theorem. When the progressions are \(n \) and \(n + 2 \), then we once again get Twin Prime Conjecture. Taking \(n \) and \(2n + 1 \) gives conjecture about infinitude of Sophie-Germain primes. Similarly, de Polignac’s Conjecture follows from Dickson’s conjecture as well. Finally, the question about arbitrary long arithmetic progressions of primes is also a special case of this conjecture. As can be seen, some special cases have already been proven. The latter case is answered by the famous theorem of Green and Tao (25):

Theorem 14 (Green-Tao Theorem). Primes contain arbitrarily long arithmetic progressions.

3.2 Characterization of twin primes

Characterization by congruence relations

Let’s start with a basic theorem that will be used throughout this section.

Theorem 15 (Wilson’s Theorem). Let \(n > 1 \) be an integer. Then \(n \) is a prime if and only if

\[(n - 1)! + 1 \equiv 0 \pmod{n} \tag{3.2} \]

More precisely,

\[(n - 1)! + 1 \equiv \begin{cases} 0 \pmod{n}, & \text{if } n \text{ is a prime,} \\ 1 \pmod{n}, & \text{otherwise.} \end{cases} \tag{3.3} \]

Proof. Assume that \(n \) is a prime. Every number from the set \{1, 2, \ldots, n - 1\} is coprime to \(n \) and therefore has a multiplicative inverse modulo \(n \). We know that the only solutions to the equation

\[x^2 \equiv 1 \pmod{n} \]

are 1 and −1. These numbers are their own inverses and all other numbers can be grouped into pairs of mutual inverses, say \((r_i, q_i)\) for \(1 \leq i \leq \frac{n-3}{2}\). As \(r_i q_i \equiv 1 \pmod{n} \), we now have

\[(n - 1)! \equiv 1 \cdot 2 \cdot \ldots \cdot (n - 1) \equiv 1 \cdot (-1) \cdot (r_1 q_1) \cdot (r_2 q_2) \cdot \ldots \cdot (r_{\frac{n-3}{2}} q_{\frac{n-3}{2}}) \equiv -1 \pmod{n}. \]
This shows the first part of the theorem.

Assume now that \(n \) is a composite number. Hence there are two numbers \(1 < a, b < n \), such that \(n = ab \). If \(a \neq b \) then these numbers are two distinct numbers in the factorial \((n-1)! \). Consequently \(n = ab \mid (n-1)! \) and we are done.

Otherwise, \(a = b \) and \(n = a^2 \). If \(a = 2 \) (and \(n = 4 \)) the theorem can be verified by a direct calculation. Thus we may assume that \(a > 2 \). In that case \(2a < a^2 = n \) and we see that \(a \) and \(2a \) are two distinct numbers in the product \((n-1)! \). Finally we get \(n = a^2 \mid (2a)a \mid (n-1)! \) and Wilson's theorem is proven.

We will use this theorem to prove Clement's Theorem ([8]) which characterizes a pair of twin primes in the spirit of Wilson's Theorem.

Theorem 16 (Clement's Theorem on twin primes). Let \(n > 1 \) be an integer. Integers \(n \) and \(n + 2 \) are both primes if and only if

\[
4 \mid (n-1)! + 1 \equiv n \equiv 0 \pmod{n(n+2)}.
\] (3.4)

Proof. The theorem can be verified by a direct computation for \(n \leq 4 \), so we assume that \(n > 4 \).

From now on, assume that \(n \) and \(n + 2 \) are primes. From Wilson's theorem we have \((n-1)! + 1 \equiv 0 \pmod{n} \). Hence

\[
4 \mid (n-1)! + 1 \equiv 4 \cdot 0 + n \equiv 0 \pmod{n}.
\]

Since \(n + 2 \) is a prime too, we get \((n+1)! + 1 \equiv 0 \pmod{(n+2)} \) and

\[
4 \mid (n-1)! + 1 \equiv 2[2(n-1)! + 2] + n \equiv 2[(-1)(-2)(n-1)! + 2] + n =
\[
\equiv 2[(n+1)! + 1] + n \equiv 2 \cdot 1 + n \equiv 0 \pmod{(n+2)}.
\]

By Chinese Remainder Theorem we obtain (3.4).

Assume therefore that (3.4) is true. We have to show that \(n \) and \(n + 2 \) are primes. If \(n \) is not a prime, then \((n-1)! \equiv 0 \pmod{n} \) and

\[
0 \equiv 4[(n-1)! + 1] + n \equiv 4 + n \equiv 4 \pmod{n}.
\]

Hence \(n \mid 4 \). This implies that \(n \leq 4 \) - a contradiction, showing that \(n \) must be a prime.

This time assume that \(n + 2 \) is not a prime. Then \((n+1)! \equiv 0 \pmod{(n+2)} \) and, just as before,

\[
0 \equiv 4[(n-1)! + 1] + n \equiv 2[(n+1)! + 2] + n \equiv 4 + n \equiv 2 \pmod{(n+2)}.
\]

Thus \((n+2) \mid 2 \). In particular \(n \leq 0 \) which is absurd. This finishes the proof.

In [30] a further generalization of Clement's theorem is given. It characterizes pairs of primes whose difference is an arbitrary positive even number (cf. Conjecture [5]). In this thesis we present a slightly refined version of this theorem, requiring weaker assumptions and having a simpler proof.
Theorem 17 (Generalization of Clement’s Theorem). Let $n, k > 1$ be integers. Integers n and $n + 2k$ are a pair of primes if and only if n has no proper prime divisors smaller than $2k$ and
\[
2k(2k)!\left[(n-1)! + 1 \right] + [(2k)! - 1] \equiv 0 \pmod{2(n+2k)}.
\tag{3.5}
\]

Remark. It can be easily checked that Clement’s theorem is a special case of this theorem when $k = 1$.

Unfortunately, the assumption about proper prime factors of n cannot be omitted. One can see that by taking $n = 9$ and $k = 4$. These numbers satisfy the congruence \eqref{3.5}, but 9 is not a prime.

Proof. Before we begin, we need a simple identity:
\[
(n + 2k - 1)! \equiv (n-1)! \cdot n \cdot (n+1) \cdot \ldots \cdot (n+2k-1) \equiv
\equiv (n-1)! \cdot (-2k) \cdot (-2k+1) \cdot \ldots \cdot (-1) \equiv
\equiv (n-1)! (2k)! \pmod{(n+2k)}.
\]

Assume that n and $n + 2k$ are primes. It follows easily that n, being a prime, has no proper prime divisors and, in particular, no prime factors smaller than $2k$.

From Wilson’s theorem $(n-1)! + 1 \equiv 0 \pmod{n}$ and
\[
2k(2k)!\left[(n-1)! + 1 \right] + [(2k)! - 1] \equiv 0 \pmod{n}.
\]

Also $n+2$ is a prime so $(2k)! \equiv (n+2k-1)! \equiv -1 \pmod{(n+2)}$. This leads to
\[
2k(2k)!\left[(n-1)! + 1 \right] + [(2k)! - 1] \equiv 2k(2k)!\left[(n-1)! + 2k(2k)! + n(2k)! - n \equiv
\equiv -2k - 2k(2k)! + n(2k)! - n \equiv
\equiv [(2k)! - 1] (n + 2k) \equiv 0 \pmod{(n + 2k)}.
\]

Application of Chinese Remainder Theorem shows that \eqref{3.5} holds.

Next, let’s prove that n and $n + 2k$ are primes when \eqref{3.5} is true and n has no proper prime factors smaller than $2k$. Assume that $2n + k$ is not a prime. Another application of Wilson’s theorem gives $(2k)! \equiv (n+2k-1)! \equiv 0 \pmod{(n+2k)}$.

We easily see that
\[
0 \equiv 2k(2k)!\left[(n-1)! + 1 \right] + [(2k)! - 1] \equiv
\equiv 2k(2k)!\left[(n-1)! + 2k(2k)! + n(2k)! - n \equiv
\equiv (2k)! (n + 2k) - n \equiv 2k \pmod{(n + 2k)}.
\]

In particular $n + 2k \leq 2k$ or $n \leq 0$. This contradiction shows that $n + 2k$ is a prime.

It remains to show that n is a prime. Assume it is not. We already know that $n + 2k$ is a prime, so $2k$ and $n + 2k$ are coprime. From this we deduce that $2k$ and n are also coprime:
\[
(n, 2k) = (n + 2k, 2k) = 1.
\]
Since \(n \) is not a prime or \((n - 1)! \equiv 0 \mod (n) \), we obtain from (3.5)
\[
0 \equiv 2k(2k)! [(n - 1)! + 1] + [(2k)! - 1] n \equiv \\
\equiv 2k(2k)! \mod (n).
\]
But \((n, 2k) = 1 \) and we can divide by \((2k)^2\) to get
\[
(2k - 1)! \equiv 0 \mod (n).
\]
Let \(p \) be a proper prime factor dividing \(n \). From our assumptions we know that \(p \geq 2k \). But from the above relation \(p \mid (2k - 1)! \), so \(p \) divides at least one number smaller than \(2k \). This means that \(p < 2k \) - a contradiction that shows that \(n \) must be a prime. The proof is concluded. \(\square \)

Characterization by multiplicative functions

Another way to characterize twin prime pairs is the theorem given in [29]. Beforehand, however, we need to define functions \(\sigma \) and \(\varphi \).

Definition (Divisor function \(\sigma \)). For a positive integer \(n \), we define
\[
\sigma(n) = \sum_{d \mid n} d,
\]
a sum of all positive divisors of \(n \).

Definition (Euler’s totient function \(\varphi \)). For a positive integer \(n \), we define
\[
\varphi(n) = \sum_{1 \leq a \leq n \atop (a, n) = 1} 1,
\]
a number of positive integers not bigger than \(n \) and coprime to \(n \).

It is easy to check that these functions are multiplicative, i.e., whenever \(a \) and \(b \) are coprime,
\[
\sigma(ab) = \sigma(a)\sigma(b) \quad \text{and} \quad \varphi(ab) = \varphi(a)\varphi(b).
\]
Using this property, if we write an integer \(n \) as
\[
n = p_1^{a_1} \cdot p_2^{a_2} \cdots p_k^{a_k},
\]
where \(p_i \) are distinct primes and \(a_i \) are non-negative integers for \(i \in \{1, 2, \ldots, k\} \), then
\[
\sigma(n) = \prod_{1 \leq i \leq k} \frac{p_i^{a_{i+1}} - 1}{p_i - 1} \quad (3.6)
\]
and
\[
\varphi(n) = \prod_{1 \leq i \leq k} p_i^{a_i} - 1 \cdot (p - 1) \quad (3.7)
\]
Now we can state the following
Theorem 18 (Characterization of twin primes by multiplicative functions).
A number \(n \) is a product of two primes that differ by 2 (i.e., twin primes) if and only if
\[
\varphi(n)\sigma(n) = (n - 1)^2 - 4. \tag{3.8}
\]

Proof. Let’s prove the necessity of the condition. Assume therefore that \(n = p(p + 2) \) and both \(p \) and \(p + 2 \) are primes. Then, by multiplicative properties of \(\varphi \) and \(\sigma \)
\[
\varphi(n)\sigma(n) = (p - 1)(p + 1) \cdot (p + 1)(p + 3) = (p(p + 2) - 1)^2 - 4.
\]
Assume now that (3.8) holds. We may write \(n \) as
\[
n = p_1^{a_1} \cdot p_2^{a_2} \cdots p_k^{a_k},
\]
where \((p_1 > p_2 > \ldots > p_k) \). Then, by (3.6) and (3.7),
\[
\varphi(n)\sigma(n) = \prod_{1 \leq i \leq k} p_i^{a_i - 1} \left(p_i^{a_i + 1} - 1 \right)
\]
and our assumption can be written as
\[
2n + 3 = n^2 - \prod_{1 \leq i \leq k} p_i^{a_i - 1} \left(p_i^{a_i + 1} - 1 \right). \tag{3.9}
\]
First, let’s notice that \(k \) cannot be 1. To see that, let’s assume that \(k = 1 \). Then we have
\[
2p^{a} + 3 = p^{a-1}
\]
\[
p^{a-1}(2p - 1) = 3.
\]
This implies that \(p = 1 \), a contradiction and \(k \geq 2 \).
Now it’s easy to see that \(n \) must be odd. Indeed, if \(n \) is even, then the left hand side of (3.9) is odd. Also, since \(k \geq 2 \) there is another, odd prime, say \(p_j \), dividing \(n \). But then \(p_j^{a_j + 1} - 1 \) is even and the right hand side of (3.9) is even. This contradiction shows that \(p_1 \geq 3 \).
Now, we will prove that \(n \) must be squarefree. To see that, let’s assume that \(p^2 \mid n \) for some prime \(p \). Reducing (3.9) \((\text{mod } p)\) we immediately see that \(p \mid 3 \) and \(p \) must be 3. So we have \(3^2 \mid n \). But since \(k \geq 2 \) there exists a prime \(p_j \), distinct from \(p \), such that \(p_j \mid n \) and \(p_j^2 \nmid n \) (we just have proven the last fact). Hence \(p_j \equiv \pm 1 \pmod{3} \) or \(p_j^{a_j + 1} - 1 \equiv 0 \pmod{3} \), since \(a_j = 1 \). Therefore the right hand side of (3.9) is divisible by 9, but the left side is not. Thus \(n \) is squarefree and (3.9) becomes
\[
2n + 3 = n^2 - \prod_{1 \leq i \leq k} (p_i^2 - 1). \tag{3.10}
\]
Consequently, let’s rule out the case $k \geq 3$. Since $p_1 \geq 3, p_2 \geq 5, p_3 \geq 7$, we have

$$n^2 - \prod_{1 \leq i \leq k} (p_i^2 - 1) = p_1^2 p_2^2 \cdots p_k^2 - (p_1^2 - 1)(p_2^2 - 1) \cdots (p_k^2 - 1) >$$

$$> p_1^2 p_2^2 \cdots p_k^2 - (p_1^2 - 1)p_2^2 \cdots p_k^2 = p_2 p_3 \cdots p_k \cdot n > p_3 p_4 \cdots p_k \cdot n \geq 7n >$$

$$> 2n + 3,$$

a contradiction which shows that n is a product of two distinct primes. Let’s write $n = pq$ and plug it into (3.10). This gives

$$2pq + 3 = p^2q^2 - (p^2 - 1)(q^2 - 1)$$

$$p^2 - 2pq + q^2 - 4 = 0$$

$$(p - q)^2 - 2^2 = 0$$

$$(p - q + 2)(p - q - 2) = 0.$$

This means that either $p = q - 2$ or $p = q + 2$. In both cases (p, q) is a twin prime pair. This finishes the proof of the theorem.

Actually, in [36] the authors show

Theorem 19 (Sergusov's Theorem). A number n is a product of two primes that differ by 2 if and only if

$$\sigma(n) = n + 1 + 2\sqrt{n + 1} \quad \text{or} \quad \phi(n) = n + 1 - 2\sqrt{n + 1}. \quad (3.11)$$

Proof. Let $n = p(p + 2)$ for some prime p, such that $p + 2$ is also prime. Then we have

$$\sigma(p(p + 2)) = (p + 1)(p + 3) = p(p + 2) + 1 + 2(p + 1) =$$

$$= p(p + 2) + 1 + 2\sqrt{(p + 1)^2} = p(p + 2) + 1 + 2\sqrt{p(p + 2) + 1} =$$

$$= n + 1 + 2\sqrt{n + 1},$$

$$\phi(p(p + 2)) = (p - 1)(p + 1) = p(p + 2) + 1 - 2(p + 1) =$$

$$= n + 1 - 2\sqrt{n + 1}.$$

Now we will use two basic facts:

$$\sigma (n) \geq n + 1,$$

$$\phi (n) \leq n - 1.$$

Here the equality holds if and only if n is a prime.

We may now put $n = m^2 - 1$, because otherwise the right hand sides in (3.11) would not be integers. Then the equation becomes:

$$\sigma ((m - 1)(m + 1)) = m(m + 2) \quad \text{or} \quad \phi ((m - 1)(m + 1)) = m(m - 2).$$
Let’s assume that \((m - 1, m + 1) = 1\). Then
\[
m(m + 2) = \sigma ((m - 1)(m + 1)) \geq m(m + 2).
\]
Therefore both \(m - 1\) and \(m + 1\) must be primes.

If \(m - 1\) and \(m + 1\) are not coprime, then \((m - 1, m + 1) = (2, m + 1) = 2\) and \(m\) is odd. We put \(m = 2k + 1\) to get
\[
4k^2 + 8k + 3 = \sigma (2k(2k + 2)) = \sigma (4k(k + 1)).
\]
Now if \(k\) is odd then
\[
4k^2 + 8k + 3 = \sigma (4(k + 1)) \sigma (k) \geq (4k + 5)(k + 1) = 4k^2 + 9k + 5,
\]
a contradiction. Therefore \(k\) is even and
\[
4k^2 + 8k + 3 = \sigma (k + 1) \sigma (4k) \geq (k + 2)(4k + 1) = 4k^2 + 9k + 2.
\]
So \(k = 1\), but this means that \(n = 3 \cdot 5\).

Again, let’s assume that \((m - 1, m + 1) = 1\). Thus we obtain
\[
m(m - 2) = \varphi ((m - 1)(m + 1)) \leq m(m - 2)
\]
and once more both \(m - 1\) and \(m + 1\) must be primes.

If \((m - 1, m + 1) = 2\), we put \(m = 2k + 1\) to obtain
\[
4k^2 - 1 = \varphi (4k(k + 1)).
\]
If \(k\) is odd, then:
\[
4k^2 - 1 = \varphi (4(k + 1)) \varphi (k) \leq (4k + 3)(k - 1) = 4k^2 - k - 3,
\]
with no solutions in positive \(k\).

Finally, if \(k\) is even then
\[
4k^2 - 1 = \varphi (k + 1) \varphi (4k) \leq k(4k - 1) = 4k^2 - k,
\]
which implies that \(k = 1\) and \(n = 3 \cdot 5\).

\[\square\]

3.3 Summary

In this chapter, the current knowledge about the Twin Prime Conjecture was presented. Moreover, we showed few related problems in the number theory. The positive answer to some of them would imply the Twin Prime Conjecture. We also provided couple of ways to characterize twin primes with the proofs.
Chapter 4

Prime sieving algorithms

The term sieve in mathematics is ambiguous – there are at least two different, yet connected ideas bearing this name. Most people will think about a sieve of Eratosthenes – the famous ancient method to produce a list of all primes up to a specific number. We will present this algorithm and refined algorithms that can be used for the same purpose.

However, this is only a tip of the iceberg. In 20th century a truly beautiful and powerful sieve methods were introduced. It dates back to 18th century when Legendre, using a sieve of Eratosthenes, developed an idea now confusingly known as the sieve of Eratosthenes, too. We have to stress a distinction between the sieve of Eratosthenes, \textit{the algorithm} and the sieve of Eratosthenes, \textit{the combinatorial tool}.

4.1 Sieve of Eratosthenes

The most basic and historically the first method used to obtain a list of prime numbers up to some limit is the sieve of Eratosthenes. Eratosthenes was the director of the library of Alexandria, famous not only because of his sieve, but also for performing high precision measurement of the circumference of Earth. However, historically the first appearance of sieve of Eratosthenes is known to us from the work of Nicomedes, his only complete work that survived to our times, entitled \textit{Introduction to arithmetic}.

Assume we want to make a list of prime numbers up to \(n \). We start with a list of numbers from 2 to \(n \) and follow these steps:

1. Take the smallest number \(i \) that is not yet crossed out. This is a prime.

2. If \(i^2 > n \) the algorithm finishes. Primes are the numbers that where not crossed out.

3. Otherwise cross out the numbers \(2i, 3i, 4i, \) etc. from the list.
Figure 4.1: Consecutive steps in the sieve of Eratosthenes

4. Go to the Step 1.

The example of this process is presented in Figure 4.1. The pseudocode for this algorithm is given in Algorithm 4.1.

The algorithm relies on a basic fact that if a number d is composite then it has a prime factor not greater than $\lfloor \sqrt{d} \rfloor$. This precisely is the stopping condition in Step 2.

We immediately see that the space needed to run this algorithm is $O(n)$.

Let’s now compute the running time of this algorithm as the number of operations required to finish the sieving. In our model every arithmetical operation will take a bounded time what is not true in practice.

\begin{algorithm}
\begin{algorithmic}
\Require $A[i]$ for $2 \leq i \leq n$ - an array of numbers to sieve for primes
\Ensure $A[i] = 1$ iff i is a prime number
\State \For $i \gets 2 \ldots n$ \Do $A[i] \gets 1$
\EndFor
\State \For $i \gets 2 \ldots \lfloor \sqrt{n} \rfloor$ \Do $A[i] = 1$ \Then
\For $j \in \{2i, 3i, 4i, \ldots\}, j \leq n$ \Do $A[j] \gets 0$
\EndFor
\EndIf
\EndFor
\end{algorithmic}
\end{algorithm}

Algorithm 4.1: Sieve of Eratosthenes.

The algorithm has $\pi(\sqrt{n})$ iterations. For every iteration we have to cross out all multiples of prime p (without p itself). There are $\left\lfloor \frac{n}{p} \right\rfloor - 1 = O\left(\frac{n}{p}\right)$ of them at each stage. Therefore the running time is of order

$$\sum_{p \leq \sqrt{n}} O\left(\frac{n}{p}\right) = O\left(n \sum_{p \leq \sqrt{n}} \frac{1}{p}\right) = O(n \log \log \sqrt{n}) = O(n \log \log n),$$

by using the Mertens’ Theorem (Theorem 2). This is a little more than linear in respect to the size of n and we can say that on average $\log \log n$ operations need to be performed for every number to tell if it is a prime. This function diverges to infinity, but very slowly.

31
By using more sophisticated arguments one can reduce the complexity of the sieve of Eratosthenes. In [11, Section 3.2.7] authors present a refinement of the above algorithm which runs in sublinear time \(O\left(\frac{n}{\log \log n}\right) \). We, instead, will describe in Section 4.5 how the factor \(\log \log n \) can be easily removed leading to a sieving algorithm with linear complexity.

There is also a less known variant of the sieve of Eratosthenes, called Euler’s sieve where each composite number is removed exactly once (Figure 4.1 shows that in the original algorithm numbers are often crossed out multiple times). The algorithm starts with a list of numbers from 2 to \(n \) and goes as follows:

1. Take the smallest number \(i \) that is not yet crossed out. This is a prime.
2. If \(i^2 > n \) the algorithm finishes. Primes are the numbers that remain.
3. Otherwise build a new list by multiplying every element of original list by \(i \). Remove every element from this list from the original list.
4. Go to the Step 1.

As we can see, only the Step 3 is substantially different. We remove numbers instead of crossing them out and they are not considered afterwards. Nevertheless, the number of iterations will be the same as before. The algorithm is presented as Algorithm 4.2.

\[\text{Require: } A = \{2, 3, \ldots, n\} - \text{a set of numbers to sieve for primes} \]
\[\text{Ensure: } A \text{ contains only prime numbers} \]

1: while \(\exists i \leq \lfloor \sqrt{n} \rfloor, i \in A \) do
2: \(B \leftarrow \{ij : j \in A, j \geq i, ij \leq n\} \)
3: \(A \leftarrow A - B \)
4: end while

Algorithm 4.2: Sieve of Euler.

The correctness of the algorithm can be proven easily. First, observe that primes will not be sieved during the process as only the composite numbers are removed. Now, let’s take any composite number \(m \) from the list. Thus \(m = pd \) where \(1 < p, d < m \) and \(p \) is the smallest prime factor of \(m \). It follows that \(m \) will be sieved during the iteration where \(a = p \) because \(d \) (having no prime factors smaller than \(p \)) was not removed during previous iterations.

Let’s compute the running time for that sieve. We assume that we can remove a number from a list in a constant time. There will be \(n - \pi(n) \) removals in total, because we are left with \(\pi(n) \) primes at the end. Therefore the running time is

\[n - \pi(n) = n - O\left(\frac{n}{\log n}\right) = O(n), \]
by the Prime Number Theorem (Theorem 13). This is a small improvement over the original algorithm. In practice the assumption about constant time removal of elements is not feasible. The standard data structures implementing an ordered set of numbers (e.g., red-black trees) are of complexity $O(\log n)$ ([10 chapters 13, 14]).

As a result, implementations of Euler’s sieve tend to be slower than the sieve of Eratosthenes.

4.2 Sieve of Sundaram

In [33] authors present an interesting prime sieve called Sundaram’s sieve. It was discovered by an Indian student S. P. Sundaram in 1934.

The algorithm, as usual, starts with a list of numbers from 1 to n. This time, however, we will sieve numbers up to $2n + 2$ as this sieve explicitly does not consider even numbers. Now, we cross out all numbers of the form $i + j + 2ij \leq n$ where $1 \leq i \leq j \leq \frac{n-1}{3}$. The primes are obtained by taking all the numbers that were not crossed out, multiplying them by 2 and incrementing by 1. Notice that 2 will not be on the list. The pseudocode for this algorithm is presented as Algorithm 4.3.

Algorithm 4.3: Sieve of Sundaram.

The algorithm works because of the following identity:

$$2(i + j + 2ij) + 1 = (2i + 1)(2j + 1). \quad (4.1)$$
Therefore an odd number will be crossed out if and only if it is a product of two odd numbers greater than 1, i.e., it is composite.

The memory requirement is of order $O(n)$ and the running complexity of this method is

$$\sum_{1 \leq j \leq (n-1)/3} \left\lfloor \frac{n-j}{1+2j} \right\rfloor = \sum_{1 \leq j \leq (n-1)/3} \frac{n-j}{1+2j} + O(n) =$$

$$= n \sum_{1 \leq j \leq (n-1)/3} \frac{1}{1+2j} - \sum_{1 \leq j \leq (n-1)/3} O(1) + O(n) =$$

$$= nO(\log n) + O(n) = O(n \log n),$$

since $\frac{1}{2j} < \frac{1}{2j+1} < \frac{1}{2j+2}$ and by asymptotic behavior of harmonic series. This is slightly worse than the sieve of Eratosthenes, but nevertheless the algorithm is notable for its simplicity.

4.3 Sieve of Pritchard

In [34] the author shows a simple refinement of the sieve of Eratosthenes. The basic observation is that the order of two nested loops in Algorithm 4.1 can be reversed. If d is a composite number we can write $d = pf$, where p is the smallest prime dividing d (of course $p \leq \sqrt{d}$ and $f > 1$). In the sieve of Eratosthenes we basically iterate over p and then over f. If we are to reverse this order, we have to have a list of primes beforehand. How can we do that if we actually sieve to obtain this list?

In fact we only need the primes up to \sqrt{n}. Then for every possible value of f we take every prime p and we cross out numbers of the form pf. We observe that f must be bigger than 1 and not bigger than $\frac{n}{p}$ (because $f = \frac{n}{p} \leq \frac{n}{2}$). The last, but crucial observation is that if p is the smallest prime diving $d = pf$, then the smallest prime dividing f must be at least as big as p. Therefore p ranges from 2 to the smallest prime that divides the given f.

We therefore get a method presented as Algorithm 4.4. The list of primes up to \sqrt{n} can be obtained using the classical sieve of Eratosthenes.

It’s easy to prove that the algorithm is valid. We directly see that no prime numbers are crossed out. Hence we must convince ourselves only that every composite number is crossed out. But, as we analyzed above, every composite number d is of the form $d = pf$, where p is the smallest prime dividing d, so it will be crossed out.

In fact every composite number will be sieved out exactly once. To see that assume that a number $d = p_1 f_1$ is sieved also as $d = p_2 f_2$, where p_1, p_2 are distinct primes and p_1 is the smallest prime number diving d. We therefore have $p_1 < p_2$ and it follows that $p_1 \mid f_2$ since p_1 and p_2 are coprime. But this is impossible: when $f = f_2$ in the algorithm, the inner loop will finish as soon as $p = p_1 < p_2$. This shows that every composite number will be crossed out exactly once.
Require: \(A[i] \) for \(2 \leq i \leq n \) - an array of numbers to sieve for primes

Ensure: \(A[i] = 1 \) iff \(i \) is a prime number

1: \(P \leftarrow \) a set of primes from the set \(\{1, 2, \ldots, \lfloor \sqrt{n} \rfloor \} \)
2: \textbf{for} \(i \leftarrow 2 \ldots n \) \textbf{do}
3: \hspace{1em} \(A[i] \leftarrow 1 \)
4: \textbf{end for}
5: \textbf{for} \(f \leftarrow 2 \ldots \lfloor \frac{n}{2} \rfloor \) \textbf{do}
6: \hspace{1em} \textbf{for} \(p \in P \) (in ascending order) \textbf{do}
7: \hspace{2em} \(d \leftarrow pf \)
8: \hspace{2em} \textbf{if} \(d > n \) \textbf{then}
9: \hspace{3em} \textbf{break}
10: \hspace{2em} \textbf{end if}
11: \hspace{2em} \(A[d] \leftarrow 0 \)
12: \hspace{2em} \textbf{if} \(f \mod p = 0 \) \textbf{then}
13: \hspace{3em} \textbf{break}
14: \hspace{2em} \textbf{end if}
15: \hspace{1em} \textbf{end for}
16: \textbf{end for}

Algorithm 4.4: Sieve of Pritchard.

The memory complexity of this algorithm is again \(O(n) \). The running time consists of the first sieving and the main loop, that is,

\[
O\left(\sqrt{n}\log\log\sqrt{n}\right) + O(n - \pi(n)) = O(n).
\]

It means that the elementary observations made above gave rise to a sieving algorithm that is linear. Additional work can improve the time to \(O(n/\log\log n) \). We discuss it in Section 4.5.

4.4 Sieve of Atkin

In [3], the authors propose a completely different approach. They use quadratic forms and the following three theorems to separate primes from composite numbers:

Theorem 20 (On the quadratic form \(x^2 + 4y^2 \)). Let \(n \) be a squarefree positive integer, such that \(n \equiv 1 \pmod{4} \). Then \(n \) is a prime if and only if the set

\[
\{(x, y) : x, y > 0, x^2 + 4y^2 = n\}
\]

has an odd number of elements,
Theorem 21 (On the quadratic form $x^2 + 3y^2$). Let n be a squarefree positive integer, such that $n \equiv 1 \pmod{6}$. Then n is a prime if and only if the set
\[\{(x, y) : x, y > 0, \ x^2 + 3y^2 = n\} \]
has an odd number of elements.

Theorem 22 (On the quadratic form $3y^2 - x^2$). Let n be a squarefree positive integer, such that $n \equiv 11 \pmod{12}$. Then n is a prime if and only if the set
\[\{(x, y) : y > x > 0, \ 3y^2 - x^2 = n\} \]
has an odd number of elements.

The authors prove these facts using properties of Euclidean domains obtained by extending \mathbb{Z} by roots of unity. We will show Theorem 20 using an ingenious, “one-sentence” proof of Fermat’s theorem on sum of squares given in [42] (see [1] for a “proof-from-The-Book” version). But before, we will need an obvious, but powerful lemma:

Lemma 1. Let S be a finite set and involutions f, g on this set, i.e., functions from S to S, such that for every $x \in S$
\[f(f(x)) = x \quad \text{and} \quad g(g(x)) = x. \]

Moreover, let f_1 and g_1 be numbers of fixed points of f and g, respectively. Then f_1 and g_1 have the same parity, that is,
\[f_1 \equiv g_1 \pmod{2}. \]

Remark. The finite cardinality of S (assuming that f and g have a finite number of fixed points) is important as the following counterexample shows:

\[
\begin{align*}
 f : \mathbb{N}_+ &\to \mathbb{N}_+, \quad f(x) = \begin{cases}
 n - 1, & \text{if } n \text{ is even}, \\
 n + 1, & \text{if } n \text{ is odd}.
 \end{cases} \\
 g : \mathbb{N}_+ &\to \mathbb{N}_+, \quad g(x) = \begin{cases}
 1, & \text{if } n = 1, \\
 n + 1, & \text{if } n > 1 \text{ and } n \text{ is even}, \\
 n - 1, & \text{if } n > 1 \text{ and } n \text{ is odd}.
 \end{cases}
\end{align*}
\]

Both f and g are involutions, but f has no fixed points and g has precisely one.

Proof of Lemma. First note that f and g are bijections from S to itself (they are their own inverses). Assume that $x \in S$ is not fixed by f. For such an element x we have: $f(x) = y \neq x$. But f is an involution, so this implies also that $f(y) = f(f(x)) = x \neq y$. Hence also y is not a fixed point. Consequently, the number of points that are not fixed by f is even. Therefore we have
\[|S| \equiv f_1 \pmod{2}. \]

The same is true for g_1 and the lemma follows. \qed
Proof of Theorem 20. Let \(p \) be a number, such that \(p \equiv 1 \pmod{4} \). Consider the set

\[S = \{(x, y, z) \in \mathbb{N}^3 : x^2 + 4yz = p\}. \]

It is of finite cardinality and has an obvious involution given by the transformation \((x, y, z) \to (x, z, y)\). Fixed points of this involution are precisely the representations of \(p \) as a sum of the considered quadratic form. Indeed, if \((x, y, z) = (x, z, y)\), then \(y = z \) and \(x^2 + 4y^2 = p \). Now we have another involution:

\[
(x, y, z) \to \begin{cases}
(x + 2z, z, y - x - z), & \text{if } x < y - z, \\
(2y - x, y, x - y + z), & \text{if } y - z < x < 2y, \\
(x - 2y, x - y + z, y), & \text{if } x > 2y.
\end{cases}
\]

One can easily check that this function maps solutions of \(x^2 + 4yz = p \) to different solutions. Also the boundaries above are not attained. Indeed, if \(x = y - z \), then \(p \) would be a square - a contradiction. If \(x = 2y \), then \(p \) would be even - again a contradiction.

Moreover, triples from the first case map onto the set from the third case and vice versa, and the triples from the second case map onto itself. Therefore the only fixed points of this involution satisfy the relation:

\[
(2y - x, y, x - y + z) = (x, y, z).
\]

Hence \(x = y \) and we have

\[
x^2 + 4xz = p \\
x(x + 4z) = p.
\]

(4.2)

If \(p \) is a prime then the representation above is unique and necessarily \(x = y = 1, z = \dfrac{p-1}{4} \) and there is exactly one fixed point. It follows that the first involution has an odd number of fixed points, i.e., there is an odd number of representations of \(p \) as a quadratic form \(x^2 + 4y^2 \), just as required by the assumptions of Theorem 20.

If, on the other hand, \(p \) is a composite number then there are \(\dfrac{d(p)}{2} \) solutions to (4.2). But since \(p \) is a squarefree number divisible by more than one prime, \(d(n) \) must be a power of 2 greater than 2. Then \(\dfrac{d(p)}{2} \) is an even number too. This implies that in this case the number of fixed points is even and the theorem is proven.

\[\square \]

In [15] it has been shown that this method of proof can be generalized. In particular, Zagier’s proof is a simple application of the presented technique. Moreover, in the article, the following theorem is also proven (actually only the necessity is proved, but the sufficiency follows as easily):
Theorem 23 (On the quadratic form $4x^2 + 3y^2$). Let n be a squarefree positive integer, such that $n \equiv 7$ (mod 12). Then n is a prime if and only if the set

$$\{(x, y) : x, y > 0, 4x^2 + 3y^2 = n\}$$

has an odd number of elements.

Theorem 23 is a weaker version of Theorem 21 but it will suffice. We give only an outline of a proof – the details are left to the reader as an exercise as they are very easy to check manually.

Proof of Theorem 23 Consider the set $S = \{(x, y, z) \in \mathbb{N}^3 : 3x^2 + 4yz = p\}$. We have a trivial involution $(x, y, z) \mapsto (x, z, y)$ whose fixed points map to representations of p as a quadratic form $3x^2 + 4y^2$. We also have the following, less trivial involution:

$$(x, y, z) \mapsto \begin{cases}
(x - 2y, 3x - 3y + z, y), & \text{if } y \in (0, \frac{5}{2}), \\
(-x + 2y, 3x - 3y + z), & \text{if } y \in (\frac{5}{2}, x + \frac{5}{2}), \\
(5x - 4y + 2z, 6x - 4y + 3z, -3x + 3y - z), & \text{if } y \in (x + \frac{5}{2}, \frac{3}{2}x + \frac{5}{2}), \\
(-5x + 4y - 2z, -3x + 3y - z, 6x - 4y + 3z), & \text{if } y \in (\frac{3}{2}x + \frac{3}{2}z, \frac{3}{2}x + \frac{5}{2}z), \\
(7x - 4y + 4z, 6x - 3y + 4z, -6x + 4y + 3z), & \text{if } y \in (\frac{3}{2}x + \frac{3}{2}z, \frac{7}{2}x + z), \\
(-7x + 4y - 4z, -6x + 4y - 3z, 6x - 3y + 4z), & \text{if } y \in (\frac{7}{4}x + z, 2x + \frac{3}{4}z), \\
(5x - 2y + 4z, 3x - y + 3z, -6x + 3y - 4z), & \text{if } y \in (2x + \frac{3}{4}z, \frac{5}{2}x + 2z), \\
(-5x + 2y - 4z, -6x + 3y - 4z, 3x - y + 3z), & \text{if } y \in (\frac{5}{2}x + 2z, 3x + 3z), \\
(x + 2z, z, -3x + y - 3z), & \text{if } y \in (3x + 3z, \infty).
\end{cases}$$

Note that this involution can be obtained in an almost algorithmic manner, as has been showed in [15].

Just as before, one can check, with easy but tedious calculations, that the boundaries are not attained and that it is actually an involution on the set S. Only 5 cases (precisely, the cases 2nd, 4th, 5th, 6th and 8th) above are actually involutions on their own, so we need to check only those for fixed points.

If $(-x + 2y, y, 3x - 3y + z) = (x, y, z)$ then $x = y$ and

$$3x^2 + 4xz = p$$

$$x(3x + 4z) = p.$$ \tag{4.3}$$

If $p = ab$ ($a < b$) is any factorization of p to distinct (n is squarefree) numbers then it must be that $a = x$ and $b = 3x + 4z$. It follows that $x = a$ and $z = \frac{b - 3a}{4}$ (z is an integer if you consider it (mod 4)). Therefore we must have $b > 3a$.

If $(-5x + 4y - 2z, -3x + 3y - z, 6x - 4y + 3z) = (x, y, z)$ then $3x - 2y + z = 0$ and $p = 3x^2 + 4y(2y - 3x) = 3x^2 + 8y^2 - 12xy$. If we reduce (mod 3) one gets that $p \equiv 2$ (mod 3) – a contradiction.

If $(7x - 4y + 4z, 6x - 3y + 4z, -6x + 4y + 3z) = (x, y, z)$ then $3x = 2(y - z)$, so x is even. This would imply that p is even too – a contradiction.
If \((-7x + 4y - 4z, -6x + 4y - 3z, 6x - 3y + 4z) = (x, y, z)\) then \(2x - y + z = 0\) and
\(p = 3x^2 + 4z(2x + z) = (3x + 2z)(x + 2z)\). If, as before, \(p = ab\) for any \(a < b\), we must have \(x + 2z = a\) and \(b = 3x + 2z\). It follows that \(x = \frac{b-a}{2}\) and \(y = \frac{3a-b}{4}\), so \(3a > b\) (again, a reduction (mod 4) of \(3a - b\) tells us that \(y\) is an integer). As we see, the cases counted here are exactly those that were not counted in \([4,3]\). Therefore the total number of fixed points (so far) is a number of divisors of \(p\) divided by 2 (because we require \(a < b\)).

Finally, if \((-5x + 2y - 4z, -6x + 3y - 4z, 3x - y + 3z) = (x, y, z)\) then
\(p = 3x^2 + 12xz + 8z^2\). Reduction (mod 3) implies that \(p = 2 \pmod{3}\) – again a contradiction.

We see that there are exactly \(\frac{d(p)}{2}\) fixed points. But from the proof of Theorem \([20]\) we know that it is odd if and only if \(p\) is a prime. Therefore also the number of fixed points of \((x, y, z) \rightarrow (x, z, y)\), i.e., representations of \(p\) as a quadratic form \(3x^2 + 4y^2\), is odd if and only if \(p\) is a prime. The proof is finished. \(\square\)

We will not prove Theorem \([22]\) here, because it requires a slightly different approach. However, if the reader is familiar with the algebraic number theory, the proof in the article \([3]\) is approachable.

Now we are ready to state the Algorithm \([4.5]\).

The algorithm correctly identifies primes. We argue as follows. The first loop (\(x, y\) changing from 1 to \(\lfloor \sqrt{n} \rfloor\)) uses three theorems shown above. According to the theorems, all squarefree numbers of the form \(12k + 1, 12k + 5, 12k + 7\) and 12k + 11 will be marked as primes if and only if they are primes. The numbers from other residue classes are not considered, because (with the only two exceptions of 2 and 3) they must be composite. Hence at the end of the main loop all squarefree numbers will be correctly sieved.

In the second phase we deal with the remaining numbers. The numbers divisible by 2 or 3 need not be considered, because we already ruled them out by properly partitioning them according to their residue class (mod 12). Later, for every prime greater than 3, we sieve out the numbers that are divisible by this prime squared. Obviously, a prime will not be removed because it is squarefree. Consider now a number \(m\) that is divisible by a prime squared and therefore is not squarefree. We have \(m = p^2k\) where \(p\) is a prime so this number will be crossed out when \(i = p\) in the last loop. This shows that the algorithm is correct.

Let’s analyze the complexity of Algorithm \([4.5]\). The main loop runs for time
\[O\left(\lfloor \sqrt{n} \rfloor^2\right) = O(n)\]. The auxiliary loop runs for time
\[
\sum_{5 \leq p \leq \sqrt{n}} \frac{n}{p^2} = n \cdot \frac{1}{2} \cdot O(1) = O(n),
\]
so the total time is \(O(n)\). Also, from Theorem \([19]\) we know that the number of squarefree numbers smaller than \(n\) is asymptotically \((1 - \frac{6}{\pi^2})n\), so the auxiliary loop (which sieves out square numbers) cannot be further optimized. However, with some additional work the running time of this algorithm can be improved to be \(O\left(\frac{n}{\log \log n}\right)\) (see Section \([4.5]\)).
Require: \(A[i] \) for \(5 \leq i \leq n \) - an array of numbers to sieve for primes

Ensure: \(A[i] = 1 \) iff \(i \) is a prime number

1: for \(i \leftarrow 5 \ldots n \) do
2: \(A[i] \leftarrow 0 \)
3: end for
4: for \(x \leftarrow 1 \ldots \lfloor \sqrt{n} \rfloor \) do
5: for \(y \leftarrow 1 \ldots \lfloor \sqrt{n} \rfloor \) do
6: if \(4x^2 + y^2 \equiv 1 \text{ or } 5 \pmod{12} \land 4x^2 + y^2 \leq n \) then
8: end if
9: if \(3x^2 + 4y^2 \equiv 7 \pmod{12} \land 3x^2 + 4y^2 \leq n \) then
11: end if
12: if \(3x^2 - y^2 \equiv 11 \pmod{12} \land 3x^2 - y^2 \leq n \land x > y \) then
14: end if
15: end for
16: end for
17: for \(i \leftarrow 5 \ldots \lfloor \sqrt{n} \rfloor \) do
18: if \(A[i] = 1 \) then
19: for \(k \in \{i^2, 2i^2, 3i^2, \ldots\} \land k \leq n \) do
20: \(A[k] = 0 \)
21: end for
22: end if
23: end for

Algorithm 4.5: Sieve of Atkin.

The authors of \([3]\) also give a highly optimized implementation of their algorithm. It is available at \([4]\) and will be used to generate primes in Section \([6.3]\).

4.5 Possible improvements

It is easy to obtain a theoretical bound on the number of steps needed to obtain a list of primes up to the number \(n \). Let’s start, like always, with a list \(A \) of numbers from 2 to \(n \). We require at the end of an algorithm to be able to distinguish prime numbers from the rest. It means that \(A[i] \neq A[j] \) for every pair of numbers where either \(i \) or \(j \) (but not both!) is prime. But this means that the algorithm has to change the value of at least \(\pi(n) \) (number of primes) or \((n - \pi(n)) \) (number of composites) elements. Therefore the running time of any prime sieving algorithm is at least

\[
\min(\pi(n), n - \pi(n)) = \min\left(\frac{n}{\log n}, n - \frac{n}{\log n}\right) = \frac{n}{\log n},
\]
for a big enough \(n \) and from Prime Number Theorem (Theorem 13). We don’t know any algorithm running in such a time. This also shows why the previous algorithms were at best linear – they cross out composites. There are asymptotically \(n \) of them in the range from 1 to \(n \), so this is the minimal number of steps if one sieves out every composite number.

However, as we will later see, the number of sieved composites can be made smaller by simple techniques.

Wheel data structure

A *wheel* is a data structure that allows to explicitly ignore numbers that must be composite numbers. For example, there is no need to consider even numbers (apart from 2). We could ignore as well multiples of 3, of 5, etc. This leads to the idea of considering \(M_k \), a product of first \(k \) primes

\[
M_k = p_1 \cdot p_2 \cdots p_k.
\]

The wheel is a list of \(M_k \) elements indexed from 0 to \(M_k - 1 \). The \(k \)-th element represents numbers congruent to \(k \mod M_k \). We set, for \(i \in \{0, 1, \ldots, M_k - 1\} \):

\[
M[i] = \begin{cases}
0, & \text{if } i \text{ is not coprime to } M_k, \\
\text{for some } d_i, & \text{if } i \text{ is coprime to } M_k,
\end{cases}
\]

(4.4)

where \(d_i \) is the smallest positive integer, such that \(i + d_i \) is coprime to \(M_k \).

We can compute this data structure for the given \(k \) in the time proportional to \(M_k \) ([13]). With this additional information we can “skip” the numbers that cannot be primes. To see how many numbers we will skip, let’s compute \(\varphi(M_k) \), namely

\[
\varphi(M_k) = \varphi(p_1) \cdot \varphi(p_2) \cdots \varphi(p_k) = (p_1 - 1) \cdot (p_2 - 1) \cdots (p_k - 1).
\]

Consequently, we observe that the ratio of numbers coprime to \(M_k \) to all numbers is

\[
\frac{\varphi(M_k)}{M_k} = \prod_{p \leq p_k} \frac{p-1}{p} = \prod_{p \leq p_k} \left(1 - \frac{1}{p}\right).
\]

From Mertens’ Third Theorem (Theorem 12) we obtain positive constants \(c_1 \) and \(c_2 \), such that

\[
\frac{c_1}{\log p_k} < \frac{\varphi(M_k)}{M_k} < \frac{c_2}{\log p_k},
\]

(4.5)

for \(k \) large enough.

In practice \(M_k \) is taken to be between \(n^{1/3} \) and \(n^{1/2} \). This assumption and Theorem 5 imply that

\[
\frac{c_3}{\log \log n} < \frac{1}{\log p_k} \frac{c_4}{\log \log n},
\]

(4.6)
for some positive constants c_3 and c_4. The inequalities (4.5) and (4.6) together give
\[
\frac{c_1 c_3}{\log \log n} < \frac{\varphi(M_k)}{M_k} < \frac{c_2 c_4}{\log \log n}.
\]
Therefore, the fraction of integers that we will have to check for the primality is bounded from above and below by the function $\frac{1}{\log \log n}$ multiplied by some positive constants. Informally, the work to be done will be reduced by a factor of $\frac{1}{\log \log n}$ (the upper bound) and cannot be improved upon anymore by this method (the lower bound).

The method will reduce the number of steps in sieve of Eratosthenes, sieve of Pritchard or sieve of Atkin, so that the running complexity for each algorithm can be:

- Sieve of Eratosthenes – $O(n)$,
- Sieve of Pritchard – $O\left(\frac{n}{\log \log n}\right)$,
- Sieve of Atkin – $O\left(\frac{n}{\log \log n}\right)$.

For more details see [37].

Segmented sieve

All the presented methods use memory of size $O(n)$ to store the whole list of numbers. Another approach is to split the whole range of the numbers to sieve into “segments”. For example, to sieve primes in the range $[1, 100]$, one can first get primes in the range $[1, 25]$ then, using the primes just sieved, find primes in the range $[26, 50]$ and so on.

There are two reasons to do that:

- Smaller memory usage – this can effectively lead to an algorithm using $O(\sqrt{n})$ of space.
- Better locality of the memory – smaller segments improve the locality of the memory and can significantly improve the speed of computation. Currently processors have very fast cache memories that are by an order of magnitude faster than RAM memory (cf. Table 4.1). Therefore fitting the working set memory into processor’s cache may dramatically accelerate the process of sieving.

In [19] the sieve of Atkin’s is improved to use only space of order $O(n^{1/3+\epsilon})$. In [38] the other researchers show an algorithm with the running time of only $O\left(n(\log n)^2/\log \log n\right)$, but with a conjectured memory consumption of order $O\left((\log n)^3/\log \log n\right)$. The conjectured complexity depends on the validity of Extended Riemann Hypothesis.
<table>
<thead>
<tr>
<th>Memory type</th>
<th>Number of cycles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Register</td>
<td>≤ 1</td>
</tr>
<tr>
<td>L1 cache</td>
<td>~ 3</td>
</tr>
<tr>
<td>L2 cache</td>
<td>~ 14</td>
</tr>
<tr>
<td>Main Memory</td>
<td>~ 240</td>
</tr>
</tbody>
</table>

Table 4.1: Memory access speed in Pentium M

4.6 Summary

This chapter gave an exposition of important prime sieving algorithms. Although the most popular is the Sieve of Eratosthenes, we showed that it is not the most optimal algorithm for this problem. Apart from presentation of this algorithms, we also showed possible improvements that can be made to improve both running and space complexity. Finally, we proved two out of three theorems needed in the Sieve of Atkin in a different way than the authors.
Chapter 5

Sieve methods

5.1 History and results

After the exposition of sieving algorithms, we will describe sieving techniques used to obtain powerful theorems on the distribution of primes. In particular, with Brun's sieve we will be able to obtain the famous theorem proved in 1916 by Viggo Brun (5), stating that the sum

\[\sum_{p, p+2 \text{ are primes}} \left(\frac{1}{p} + \frac{1}{p+2} \right) \]

converges.

A motivating example is to see problems in number theory which were attacked by sieve methods (we mostly follow [24]). We have of course the famous problem communicated by Goldbach to Euler:

Conjecture 7 (Goldbach's Conjecture). Let \(n \) be an even integer greater than 2. Then \(n \) can be represented as a sum of two prime numbers.

We have also a generalization of Bertrand's postulate (cf. Theorem 4):

Conjecture 8 (On primes in the interval \((n, n+\sqrt{n})\)). For \(n \) big enough, the interval \((n, n+\sqrt{n})\) contains a prime.

Finally there is the already mentioned conjecture on the infinitude of prime twins (Conjecture 1).

All of them are long standing problems, tantalizing the mathematicians for centuries. For a very long time there was virtually no method to approach them. That was till around 1920 when Viggo Brun showed the following theorems:

Theorem 24. Every sufficiently large even integer can be represented as a sum of two numbers each of which has at most nine prime factors,
Theorem 25. If n is large enough, then the interval $(n, n + \sqrt{n})$ contains a number with at most eleven prime factors.

Theorem 26. There are infinitely many pairs of numbers of difference 2, such that both of them have at most nine prime factors.

He also showed

Theorem 27. For sufficiently large x, the number of prime twins not exceeding x, denoted $\pi_2(x)$, is

$$\pi_2(x) \leq \frac{100x}{\log^2 x}.$$

Quite unjustly, Brun’s methods were not recognized immediately. It seems that mathematicians did not believe that such elementary methods (Brun’s sieve is basically a combinatorial tool) could be used to approach such difficult conjectures like those given above. There is an anecdote that E. Landau did not read Brun’s paper for a decade because of this superstition. This skepticism was partially overcome when in 1933 L. G. Shnirelman proved his weak statement of Goldbach’s conjecture ([35]):

Theorem 28. There exists a positive integer s, such that every sufficiently large integer is the sum of at most s primes.

Another major milestone was set in 1947 by A. Selberg. Selberg’s sieve method is simpler to understand and quite often leads to better results. This again is the example of the upper bound sieve.

The methods of Brun and his successors work with numbers smaller than N, which are then sieved using primes not exceeding a certain threshold N^c. If we could set $c = \frac{1}{2}$, then the remaining numbers would be primes, of course, and we could estimate and bound precisely the number of primes in this range. But this is in general beyond the reach. One can see that all theorems of Brun above refer to numbers with a bounded number of prime factors. Some work was done to overcome this limitation. For example P. Kuhn in 1941 realized that one can obtain better bounds for the number of prime factors by “weighting” the sieve in a certain way, relaxing the restriction.

These ideas were used by J. R. Chen who in 1975 established

Theorem 29 (Chen’s Theorem I). If n is large enough, then the interval $(n, n + \sqrt{n})$ contains an integer with at most two prime factors.

He also showed ([7])

Theorem 30 (Chen’s Theorem II). Every sufficiently large even number can be written as the sum of either two primes, or a prime and an integer that is a product of at most 2 primes.
Theorem 31 (Chen’s Theorem III). There are infinitely many pairs of numbers of difference 2, such that the smaller number in the pair is a prime and the larger is a product of at most two primes.

These results are proven using basically the same approach, it seems that all these problems are deeply connected.

Sieve theory is a very exciting area of research. One of the relatively recent results that used deep sieve methods was a result of H. Iwaniec and J. Friedlander, who showed (18):

Theorem 32. There are infinitely many primes of the form $x^2 + y^4$,

and a result of D. R. Heath-Brown (27):

Theorem 33. There are infinitely many primes of the form $x^3 + 2y^3$.

These striking results show that the sieve theory can continuously provide interesting and better results in number theory.

In the following sections of this chapter we generally follow [40].

5.2 Sieve of Eratosthenes

Let’s write

$$P = \prod_{p \leq \sqrt{x}} p.$$

An integer n, such that $\sqrt{x} < n \leq x$ is a prime number if and only if P and n are coprime or $(P, n) = 1$. To formalize it, we can write

$$\pi(x) - \pi(\sqrt{x}) + 1 = \sum_{n \leq x} \delta((n, P)),$$

where

$$\delta(n) = \begin{cases} 1, & \text{if } n = 1, \\ 0, & \text{otherwise}. \end{cases}$$

But we have

$$\delta((n, P)) = \sum_{d|(n, P)} \mu(d) = \sum_{d|n} \mu(d). \quad (5.1)$$

Hence:

$$\pi(x) - \pi(\sqrt{x}) + 1 = \sum_{n \leq x} \sum_{d|n} \mu(d) = \sum_{d \leq \sqrt{x}} \sum_{d|P} \mu(d) = \sum_{d|P} \mu(d) \sum_{e \leq \frac{x}{d}} 1 =$$

$$= \sum_{d|P} \mu(d) \left\lfloor \frac{x}{d} \right\rfloor. \quad (5.2)$$
In fact this is a concealed application of inclusion-exclusion principle. Indeed, if we let \(P = p_1 p_2 \ldots p_k \), then

\[
\sum_{d \mid P} \mu(d) \left\lfloor \frac{x}{d} \right\rfloor = \sum_{d \mid P \text{ even}} \left\lfloor \frac{x}{d} \right\rfloor - \sum_{d \mid P \text{ odd}} \left\lfloor \frac{x}{d} \right\rfloor = n - \left\lfloor \frac{n}{p_1} \right\rfloor - \left\lfloor \frac{n}{p_2} \right\rfloor - \ldots - \left\lfloor \frac{n}{p_k} \right\rfloor + \ldots + (-1)^k \left\lfloor \frac{n}{p_1 p_2 \ldots p_{k-1} p_k} \right\rfloor.
\]

This formula can be used to obtain a value of \(\pi(x) \) for very large values of \(x \) (H1 288–292).

Let us go back to (5.2) and estimate its value by taking \(\left\lfloor x/d \right\rfloor = x/d + O(1) \). We obtain

\[
\pi(x) - \pi(x^{1/2}) + 1 = x \sum_{d \mid P} \frac{\mu(d)}{d} + O \left(2^{\pi(x)} \right) = x \prod_{p \mid P} \left(1 - \frac{1}{p} \right) + O \left(2^{\pi(x)} \right) =
\]

\[
= x \prod_{p \leq \sqrt{x}} \left(1 - \frac{1}{p} \right) + O \left(2^{\pi(x)} \right).
\]

This can be estimated by means of Mertens’ Theorem (Theorem [1]). Then the main term is

\[
O \left(\frac{x}{\log x} \right)
\]

and agrees with the Prime Number Theorem (Theorem [3]). Sadly, the error term \(O \left(2^{\pi(x)} \right) \) is actually bigger and this approximation is useless.

To overcome this, let’s take a parameter \(y \) instead of \(\sqrt{x} \) above. Then, by the same computation, we will arrive at:

\[
\pi(x) - \pi(y) + 1 = x \sum_{p \leq y} \left(1 - \frac{1}{p} \right) + O \left(2^{\pi(y)} \right) = x \sum_{p \leq y} \left(1 - \frac{1}{p} \right) + O \left(2^{\pi(y)} \right),
\]

where \(e \) is the Napier’s constant and \(y \) is the Euler-Mascheroni constant. Thus

\[
\pi(x) \leq x \frac{e^{-y} + o(1)}{\log y} + O \left(2^{\pi(y)} \right).
\]

To equate the two terms, the optimal choice is to take \(y = \log x \). This gives

\[
\pi(x) \leq O \left(\frac{x}{\log x} \right), \quad (5.3)
\]

which is obviously inferior to the approximation from the Prime Number Theorem. However, the generality of this method is amazing, as we will see.
Let’s find the basic ingredients in the recipe above. First, we have a set that we sieve – a set of numbers not greater than \(x \) in our case. We also have a characteristic function (sifting function) of the subset that we want to sieve out (or not to sieve out) – this is (5.1). Finally, by representing the sifting function in a convenient way and using a derived approximation (i.e., Mertens’ Theorem) we get the result.

Therefore, let us use our new tool in a different setting. We will prove

Theorem 34 (Asymptotic formula for the number of squarefree numbers).

Let \(Q(x) \) be the number of squarefree numbers not bigger than \(x \). Then

\[
Q(x) = \frac{6}{\pi^2} x + O(\sqrt{x}).
\]

Proof. The set we are about to sieve is again a set of numbers not greater than \(x \). We must now find a characteristic function for the set of squarefree numbers. Obviously, the absolute value of Möbius function is such a function. One can try this, but the obtained sum will not be easy to work with. We instead observe that the following function is also a characteristic function for squarefree numbers:

\[
s(n) = \sum_{d^{|n}} \mu(d).
\]

First observation is that this function is multiplicative. Indeed, if \(n = ab \) and \((a, b) = 1 \) then

\[
\sum_{d^{|ab}} \mu(d) = \sum_{e^{|a}} \sum_{f^{|b}} \mu(e f) = \left(\sum_{e^{|a}} \mu(e) \right) \left(\sum_{f^{|b}} \mu(f) \right).
\]

We used the fact that if \(ab \) is square, for \(a, b \) coprime, then both \(a \) and \(b \) are squares. Consequently, it’s enough to check only the value of \(s(n) \) for powers of prime numbers. Hence, let \(n = p^k \). If \(k \leq 1 \) then the only term in the sum is \(\mu(1) = 1 \). If \(k \geq 2 \), we get

\[
s\left(p^k\right) = \mu(1) + \mu(p) + \mu(p^2) + \ldots + \mu\left(p^{\lfloor k/2 \rfloor}\right) = 1 - 1 + 0 = 0.
\]

We now have

\[
Q(x) = \sum_{n \leq x} s(n) = \sum_{n \leq x} \sum_{d^{|n}} \mu(d) = \sum_{d^{|\leq x}} \mu(d)
\]

\[
= \sum_{d \leq \sqrt{x}} \sum_{e \leq \frac{x}{d^2}} \mu(d) = \sum_{d \leq \sqrt{x}} \mu(d) \left[\frac{x}{d^2} \right] = x \sum_{d \leq \sqrt{x}} \frac{\mu(d)}{d^2} + O(\sqrt{x}) =
\]

\[
= x \left(\frac{1}{\zeta(2)} - \sum_{d > \sqrt{x}} \frac{\mu(d)}{d^2} \right) + O(\sqrt{x}) = \frac{x}{\zeta(2)} + O\left(x \sum_{d > \sqrt{x}} \frac{1}{d^2} \right) + O(\sqrt{x}).
\]

48
But, using Euler’s formula (Theorem 7) we may deduce that

\[x \sum_{d > \sqrt{x}} \frac{1}{d^2} = O \left(x \frac{1}{\sqrt{x}} \right) = O(\sqrt{x}). \]

This finishes the proof. \(\square\)

This is a very interesting fact - roughly 61% of the numbers are squarefree.

We may now state the sieve problem. Let \(\mathcal{A} \) be a set of any positive integers. The general goal is to estimate the number of primes in \(\mathcal{A} \). Ideally, an asymptotic formula is obtained.

In practice, it is convenient to introduce the following definitions and notation:

\[\mathcal{A}_d = \text{card}\ \{ n \in \mathcal{A} : n \equiv 0 \pmod{d} \}, \]
\[P_y = \prod_{p \leq y} p, \]
\[S(\mathcal{A}, \mathcal{P}, y) = \text{card}\ \{ n \in \mathcal{A} : (n, P_y) = 1 \}, \]

because it’s easier to work with \(S(\mathcal{A}, \mathcal{P}, y) \). Assume further that \(\mathcal{A}_d \) can be written as

\[\mathcal{A}_d = X \frac{\omega(d)}{d} + R_d, \]

for some real \(X \), some multiplicative function \(\omega \) and a remainder term \(R_d \), hopefully small. Finally, let \(I(n) \) be a characteristic function of primes in the set \(\mathcal{A} \).

We can now deduce that

\[S(\mathcal{A}, \mathcal{P}, y) = \sum_{n \in \mathcal{A}} I(n) = \sum_{n \in \mathcal{A}} \delta((n, P_y)) = \sum_{n \in \mathcal{A}} \sum_{d | (n, P_y)} \mu(d) = \]
\[= \sum_{n \in \mathcal{A}} \sum_{d | n, d | P_y} \mu(d) = \sum_{d | P_y} \sum_{d | P_y} \mu(d) = \]
\[= \sum_{d | P_y} \mu(d) \sum_{ed \in \mathcal{A}} 1 = \sum_{d | P_y} \mu(d) \mathcal{A}_d = \]
\[= \sum_{d | P_y} \mu(d) \left(X \frac{\omega(d)}{d} + R_d \right) = X \sum_{d | P_y} \frac{\mu(d)\omega(d)}{d} + \sum_{d | P_y} \mu(d)R_d = \]
\[= X \prod_{p \leq y} \left(1 - \frac{\omega(p)}{p} \right) + \sum_{d | P_y} \mu(d)R_d. \]

Clearly, if the remainder \(R_d \) is sufficiently small and \(y \) is appropriately chosen, then a precise approximation can be obtained.
Let's go to the example at the beginning of this chapter. To estimate \(\pi(x) \) we used

\[
\mathcal{A} = \{ n : n \leq x \},
\]

\[
\mathcal{A}_d = \left\lfloor \frac{x}{d} \right\rfloor = \frac{x}{d} + O(1) \quad (X = 1, \omega(n) = 1, R_d = O(1)),
\]

\[
y = \log x.
\]

Unfortunately, the unrefined sieve of Eratosthenes is not enough to get estimates about twin prime numbers. Although it is possible to improve the sieve of Eratosthenes so that it is almost as powerful as the sieve of Brun ([9]), we do not follow this path. Instead, in the next section, we present the sieve of Brun.

5.3 Brun’s sieve

Whereas the sieve of Eratosthenes is based on the equality between multiplicative functions of the form \(\mu \ast 1 = \delta \), i.e.,

\[
\sum_{d \mid n} \mu(d) = \delta(n).
\]

The idea of Brun was to bound \(\delta \) function by two functions \(\mu_1 \) and \(\mu_2 \), such that

\[
\mu_1 \ast 1 \leq \delta \leq \mu_2 \ast 1.
\]

The choice of \(\mu_1 \) and \(\mu_2 \) leading to Brun’s sieve is

\[
\mu_1(n) = \mu(n) \chi_{2h+1}(n),
\]

\[
\mu_2(n) = \mu(n) \chi_{2h}(n),
\]

for any \(h \geq 0 \), where \(\chi_t \) is a characteristic function of numbers having at most \(t \) prime factors. Actually Brun showed the following

Theorem 35 (Brun’s Theorem). For any \(h \geq 0 \) we have

\[
\mu_1(n) \ast 1 \leq \delta \leq \mu_2(n) \ast 1. \tag{5.5}
\]

Proof. When \(n \) is not squarefree then (5.5) is true, because all sides of the inequality are zero. Let’s therefore consider \(n \) that is squarefree and let \(n \) be a product of \(k \) different primes, that is \(\omega(n) = k \). For any \(i \leq k \) there are exactly \(\binom{k}{i} \) numbers with \(i \) prime divisors dividing \(n \). We have

\[
(\mu \ast \chi_t) \ast 1(n) = \sum_{d \mid n, \omega(d) \leq t} \mu(d) = \sum_{i \leq t} (-1)^i \binom{k}{i} =
\]

\[
= \sum_{i \leq t} (-1)^i \left(\binom{k-1}{i} + \binom{k-1}{i-1} \right) = (-1)^t \binom{k-1}{t},
\]

since the sum is telescopic. But this means that \(\mu \ast \chi_t \) is positive for even \(t \) and negative otherwise. This is exactly what we wanted to show. \(\square \)
Keeping the same notation as in the previous section, we get

\[S(A, \mathcal{P}, y) = \sum_{n \in \mathcal{A}} \delta(n, P_y) \leq \sum_{n \in \mathcal{A}} \sum_{d \mid n} \mu(d) \chi_{2h}(d) = \sum_{d \in \mathcal{A}} \sum_{d \mid n} \mu(d) \chi_{2h}(d) = \sum_{d \in \mathcal{A}} \mu(d) \chi_{2h}(d) \leq \sum_{d \leq 2h} \mu(d) \chi_{2h}(d) \mathcal{A}(d) = \sum_{d \leq 2h} \mu(d) \mathcal{A}(d). \]

Similarly we may obtain the lower bound. These two bounds together give

\[\sum_{d \leq 2h} \mu(d) \mathcal{A}(d) \leq S(A, \mathcal{P}, y) \leq \sum_{d \leq 2h} \mu(d) \mathcal{A}(d). \tag{5.6} \]

The integer parameter \(h \) gives an additional degree of freedom. By setting it to a proper value, one can improve the results of the sieve of Eratosthenes. Let’s see how it can be used to obtain an improved bound on the prime counting function \(\pi(x) \).

We have, just as in the derivation of (5.3), that

\[
\pi(x) \leq \sum_{d \mid P_y} \frac{\mu(d) x}{d} = \sum_{d \mid P_y} \frac{\mu(d)}{d} x + O \left(\sum_{d \mid P_y} \frac{1}{d} \right) = x \sum_{d \mid P_y} \frac{\mu(d)}{d} - x \sum_{d \mid P_y} \frac{\mu(d)}{d} + O \left(\sum_{d \mid P_y} \frac{1}{d} \right) = x \prod_{p \leq y} \left(1 - \frac{1}{p} \right) + O \left(y + \sum_{d \mid P_y} \frac{1}{d} \right). \tag{5.7}
\]

The second error term is bounded by \(y^2 \) since this is a bound for any \(d \) in the sum. To estimate the third term, let’s take any \(u \geq 1 \). We have

\[
\sum_{d \mid P_y} \frac{1}{d} \leq \sum_{d \mid P_y} \frac{u^{\omega(d)-2h}}{d} = u^{-2h} \prod_{p \leq y} \left(1 + \frac{u}{p} \right) \leq \exp \left(-2h \log u + u \sum_{p \mid y} \frac{1}{p} \right).
\]

By taking

\[u = \frac{2h}{\sum_{p \leq y} \frac{1}{p}}, \]

51
we get (by Theorem 10)

\[
2h = u \sum_{p \leq y} \frac{1}{p} = u \log \log y + B \cdot u + O\left(\frac{u}{\log y}\right) \ll u \log \log y.
\]

Consequently, one obtains that the third error term is

\[
\ll u \exp \left(2h(1 - \log u)\right) = (\log y)^{u(1 - \log u)} = (\log y)^{u - u \log u}.
\]

Now, it's easy to see that \(u - u \log u\) is greater than 3 if \(u > 5\). Moreover, for sufficiently large \(y\) there must be an \(u\) (depending on \(y\)), such that \(5 < u < 6\) and

\[
h = \frac{1}{2} u \sum_{p \leq y} \frac{1}{p}
\]

is an integer. We now know that the third term is smaller than

\[x(\log y)^{-3}.
\]

Similarly, the second term is smaller than

\[y^{2h} = y^{u \log y} = \exp\left(6 \log y \log \log y\right).
\]

If we finally set

\[\log y = \frac{\log x}{10 \log \log x},
\]

then (5.3) becomes

\[y^{2h} \leq \exp\left(6 \frac{\log x}{10 \log \log x} \log \frac{\log x}{10 \log \log x}\right) = x^{\frac{3}{10 \log \log x}} \log \frac{\log x}{10 \log \log x} < x^{\frac{3}{10}},
\]

for \(x\) big enough.

By collecting all the bounds we obtained before, (5.7) becomes

\[
\pi(x) \leq x \prod_{p \leq y} \left(1 - \frac{1}{p}\right) + O\left(x^{\frac{3}{10}} + x \frac{(\log \log x)^3}{(\log x)^3}\right)
\]

\[
= O\left(x \frac{\log \log x}{\log x}\right) + o(x).
\]

So the final result is

\[\pi(x) \ll \frac{x \log \log x}{\log x}.
\]

This is still inferior to the Prime Number Theorem, but is a substantial improvement over (5.3). But almost the same reasoning allows us to prove the theorem of Brun.
Theorem 36 (Brun’s Theorem II). The number of primes \(p \), such that \(p < x \) and \(p + 2 \) is a prime too, denoted \(\pi_2(x) \), satisfies
\[
\pi_2(x) \ll \left(\frac{\log \log x}{\log x} \right)^2.
\]

Proof. The set of numbers to sieve is
\[
\mathcal{A} = \{m(m + 2) : m \leq x\}.
\]
As before, we have
\[
\pi_2(x) \leq \sum_{\substack{d | P_y \\omega(d) \leq 2h}} \mu(d) \mathcal{A}_d,
\]
where \(\mathcal{A}_d \) is the number \(\rho(d) \) of solutions \(m \leq x \) to the congruence
\[
m(m + 2) \equiv 0 \pmod{d}.
\]
We can solve it only for primes and then use the Chinese Remainder Theorem to get the final result. We obviously have \(\rho(2) = 1 \). Also, for odd prime \(p \), \(\rho(p) = 2 \) since either \(p \mid m \) or \(p \mid (m + 2) \). Now, each interval of length \(d \) contains \(\rho(d) \) numbers \(m \) counted in the set \(\mathcal{A}_d \). This means that one can write
\[
\mathcal{A}_d = x \frac{\rho(d)}{d} + O(\rho(d)).
\]
Performing calculations parallel to those above, we will get
\[
\pi_2(x) \leq x \sum_{\substack{d | P_y \\omega(d) \leq 2h}} \frac{\rho(d)}{d} \mu(d) \mathcal{A}_d + O \left(y + x \sum_{\substack{d | P_y \\omega(d) > 2h}} \rho(d) + x \sum_{\substack{d | P_y \\omega(d) \leq 2h}} \rho(d) \right).
\]
The main term is
\[
x \sum_{\substack{d | P_y \\omega(d) \leq 2h}} \frac{\rho(d)}{d} \mu(d) = x \left(1 - \frac{1}{2} \right) \prod_{3 \leq p \leq y} \left(1 - \frac{2}{p} \right) \leq 2x \prod_{3 \leq p \leq y} \left(1 - \frac{1}{p} \right)^2 \sim C \frac{x}{(\log y)^2},
\]
for some constant \(C \). Now, by the same method as above, we will obtain
\[
h = c_1 \log \log y + O(1)
\]
\[
\log y = c_2 \frac{\log x}{\log \log x},
\]
with appropriate constants \(c_1 \) and \(c_2 \), such that the error term is smaller than the main term. But then the main term is
\[
C \frac{x}{(\log y)^2} = C' x \left(\frac{\log \log x}{\log x} \right)^2,
\]
for another constant \(C' \). This is exactly what we wanted to prove.
From this result we obtain as an easy corollary, the main result of this chapter.

Theorem 37 (Brun's Theorem III).

\[
\sum_{p, p+2 \text{ are primes}} \left(\frac{1}{p} + \frac{1}{p+2} \right) < \infty.
\]

Proof. We use Abel's summation formula (Theorem 6) with

\[
a(n) = \begin{cases}
1, & \text{if both } n, n+2 \text{ are primes}, \\
0, & \text{otherwise},
\end{cases}
\]

\[
f(x) = \frac{1}{x}.
\]

Then we get

\[
\frac{1}{2} \sum_{p, p+2 \text{ are primes}, p \leq x} \left(\frac{1}{p} + \frac{1}{p+2} \right) \leq \sum_{p, p+2 \text{ are primes}, p \leq x} \frac{1}{p} = \sum_{3 \leq n \leq x} a(n)f(n) = \\
\frac{\pi_2(x)}{x} + \int_{3}^{x} \frac{\pi_2(t)}{t^2} dt \ll \\
\ll \left(\frac{\log \log x}{\log x} \right)^2 + \int_{3}^{x} \frac{1}{t} \left(\frac{\log \log t}{\log t} \right)^2 dt.
\]

The first term converges to zero as \(x \) goes to the infinity. Moreover, the integral

\[
\int_{3}^{x} \frac{1}{t} \left(\frac{\log \log t}{\log t} \right)^2 dt
\]

converges as \(x \) approaches the infinity. This means that the sum we started with is bounded and therefore converges. \(\square \)

5.4 Summary

In this chapter we proved a weak statement of Brun's theorem. From this fact, it follows directly that the sum of inverses of twin primes converges to a finite value. To achieve this remarkable result we used Brun's combinatorial sieve – a relatively modern tool in number theory.
Chapter 6

Related constants

There are two constants related to the Twin Prime Conjecture:

- the twin prime constant – defined already in Chapter 3,
- the Brun’s constant.

As we will see, the former one is much easier to compute.

6.1 Description of the environment

The experiments were performed on a PC computer with Intel Core i5-2410M (2.3 GHz) processor and 8GB of DDR3 operating memory. To generate primes, primegen program is used ([4]). It is written in C language and was compiled using GCC compiler (version 4.5.2). High precision computation was performed using mpmath library ([28]) at version 0.17 with GMP library ([20]) at version 4.3.2 as a backend. The version of Python distribution was 2.7.1+.

All programs written to obtain results from this thesis can be downloaded from https://bitbucket.org/thinred/twinprimes/.

6.2 Computation of C_2

Analysis

In this section the problem of calculating C_2 constant is described. The goal is to obtain a computationally feasible formula and to calculate the constant with a high precision.

Let’s start with the infinite product that defines C_2, i.e.,

$$C_2 = \prod_{p \geq 3} \left(1 - \frac{1}{(p-1)^2} \right).$$ \hspace{1cm} (6.1)
Table 6.1: Convergence of the infinite product \((6.1)\).

<table>
<thead>
<tr>
<th>Primes needed</th>
<th>Correct digits</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>0.6601618158468</td>
</tr>
<tr>
<td>6</td>
<td>0.6601618158468</td>
</tr>
<tr>
<td>31</td>
<td>0.6601618158468</td>
</tr>
<tr>
<td>305</td>
<td>0.6601618158468</td>
</tr>
<tr>
<td>1019</td>
<td>0.6601618158468</td>
</tr>
<tr>
<td>23378</td>
<td>0.6601618158468</td>
</tr>
<tr>
<td>45599</td>
<td>0.6601618158468</td>
</tr>
<tr>
<td>624284</td>
<td>0.6601618158468</td>
</tr>
</tbody>
</table>

The convergence of this product is very slow. Table [6.1] shows how many primes are needed to obtain the first, the second, etc., digit of \(C_2\).

For the sake of completeness, we provide the following formulas for \(C_2\) (23):

\[
C_2 = \sum_{n \geq 1 \text{ odd}} \frac{\mu(n)}{\varphi^2(n)} = \frac{1}{8} \sum_{n \geq 1 \text{ odd}} \frac{\mu(n)^2 \nu(n) \log^2 n}{n}.
\]

Unfortunately, they are equally impractical, because of the required computation of arithmetic functions \(\varphi(n)\) (Euler’s totient function) and \(\nu(n)\) (number of prime factors of \(n\)) and slow convergence.

To derive a better formula, we will use a method described in [17]. Let’s start with some helpful definitions.

Definition (Truncated zeta function). Let \(q\) be a prime number. The truncated zeta function \(\zeta_{\geq q}(s)\) is defined as

\[
\zeta_{\geq q}(s) = \prod_{p \geq q} \left(1 - p^{-s}\right)^{-1} = \zeta(s) \prod_{p < q} \left(1 - p^{-s}\right).
\]

Definition (Truncated prime zeta function). Let \(q\) be a prime number. The truncated prime zeta function \(P_{\geq q}(s)\) is defined as

\[
P_{\geq q}(s) = \sum_{p \geq q} p^{-s}.
\]

We have

\[
\log \zeta_{\geq q}(s) = -\sum_{p \geq q} \log \left(1 - p^{-s}\right) = \sum_{p \geq q} \sum_{m \geq 1} \frac{1}{mp^sm} = \\
= \sum_{m \geq 1} \frac{1}{m} \sum_{p \geq q} p^{-sm} = \sum_{m \geq 1} \frac{1}{m} P_{\geq q}(sm).
\]

Using Möbius inversion formula, we obtain another representation of \(P_{\geq q}\), that is,

\[
P_{\geq q}(s) = \sum_{m \geq 1} \frac{\mu(m)}{m} \log \zeta_{\geq q}(sm).
\]
By applying the logarithm on both sides of (6.1), we get

$$\log C_2 = \sum_{p \geq 3} \log \left(1 - \frac{1}{(p-1)^2}\right) = \sum_{p \geq 3} \log \frac{1 - \frac{2}{p}}{(1 - \frac{1}{p})^2} =$$

$$= \sum_{p \geq 3} \left(\log \left(1 - \frac{2}{p}\right) - 2 \log \left(1 - \frac{1}{p}\right) \right) =$$

$$= \sum_{p \geq 3} \left(\sum_{m \geq 1} \frac{2}{mp^m} - \sum_{m \geq 1} \frac{2^m}{mp^m} \right) =$$

$$= \sum_{p \geq 3} \sum_{m \geq 1} \frac{2 - 2^m}{mp^m} = \sum_{p \geq 3} \sum_{m \geq 2} \frac{2 - 2^m}{m} \mu(p) \log \zeta_3(m) =$$

$$= \sum_{k \geq 1} \sum_{m \geq 2} \frac{2 - 2^m \mu(k)}{m} \log \zeta_3(m) =$$

$$= \sum_{k, m \geq 1 \atop (k, m) \neq (1, 1)} \frac{2 - 2^m \mu(k)}{m} \log \zeta_3(m),$$

by applying (6.4) and noting that $2 - 2^m$ is zero for $m = 1$.

Now, taking $n = mk$ and $d = k$, we observe that as m and k change, n runs over all natural numbers greater than 2 and d runs over divisors of n. Therefore

$$\log C_2 = \sum_{n \geq 2} \sum_{d \mid n} \frac{2 - 2^{n/d}}{n} \mu(d) \log \zeta_3(n) =$$

$$= 2 \sum_{n \geq 2} \frac{\log \zeta_3(n)}{n} \sum_{d \mid n} \mu(d) - \sum_{2 \leq n} \frac{\log \zeta_3(n)}{n} \sum_{d \mid n} \mu(d)2^{n/d} =$$

$$= - \sum_{n \geq 2} \frac{\log \zeta_3(n)}{n} \sum_{d \mid n} \mu(d)2^{n/d} =$$

$$= \log \prod_{n \geq 2} \left[\zeta_3(n) \right]^{-\sum_{d \mid n} \mu(d)2^{n/d}},$$

since $\sum_{d \mid n} \mu(n)$ is zero for $n > 1$. Finally, we obtain an interesting formula for C_2:

$$C_2 = \prod_{n \geq 2} \left[\zeta_3(n) \right]^{-I_n} = \prod_{n \geq 2} \left[\zeta_3(n) (1 - 2^{-n}) \right]^{-I_n}, \quad (6.6)$$

where

$$I_n = \frac{1}{n} \sum_{d \mid n} \mu(d)2^{n/d}. \quad (6.7)$$

To see whether the convergence of this formula is improved we first must analyze I_n. Quite surprisingly, I_n is the number of irreducible monic polynomials
of degree n with coefficients from GF(2). In fact, it is easy to prove even a more general theorem, originally due to Gauss. The proof below comes from [9, pages 49–50] and shows a remarkable resemblance to the arguments above, justifying the presence of I_n in (5.6).

Theorem 38 (On polynomials with coefficients from GF(p)). Let I_n be the number of irreducible monic polynomials from GF(p)[x] (p - prime) of degree n. Then

$$I_n = \frac{1}{n} \sum_{d|n} \mu(d)p^{n/d}. \quad (6.8)$$

Proof. There are p^n monic polynomials of degree n. Let’s write a power series with a formal parameter T for these numbers:

$$\sum_f T^{\text{deg} f} = \sum_{n \geq 0} p^n T^n = \frac{1}{1 - pT},$$

where f runs over all monic polynomials.

On the other hand, GF(p)[x] is a Euclidean domain, so every monic polynomial has a unique representation as a product of monic irreducible polynomials. Thus we can write an Euler product for the above series as

$$\frac{1}{1 - pT} = \prod \nu \left(1 - T^{\text{deg} \nu}\right)^{-1} = \prod_{m \geq 1} (1 - T^m)^{-I_m},$$

where ν runs over all irreducible monic polynomials.

If we take a logarithm on both sides of the above equation we will have

$$\log(1 - pT)^{-1} = \sum_{n \geq 1} \frac{1}{n} p^n T^n$$

and

$$\log \prod_{m \geq 1} (1 - T^m)^{-I_m} = \sum_{m \geq 1} -I_m \log(1 - T^m) =$$

$$= \sum_{m \geq 1} \sum_{n \geq 1} \frac{I_m}{n} T^{nm} = \sum_{m \geq 1} \sum_{n \geq 1} \frac{mI_m}{nm} T^{nm} =$$

$$= \sum_{n \geq 1} \sum_{d|n} \frac{dI_d}{n} T^n.$$

If we equate the coefficients, then immediately

$$p^n = \sum_{d|n} dI_d.$$

To get the value of I_n and finish the proof, we invert the above identity and get

$$I_n = \frac{1}{n} \sum_{d|n} \mu(d)p^{n/d}.$$

This finishes the derivation. \[\square\]
Using (6.7) it is easy to show an asymptotic formula, an analogue of prime number theorem. Namely

\[
\left| \frac{1}{n} \sum_{d|n} \mu(d)2^{n/d} - \frac{2^n}{n} \right| = \left| \frac{1}{n} \sum_{d|n, d>1} \mu(d)2^{n/d} \right| \leq \frac{1}{n} \sum_{d|n, d>1} 2^{n/d} = \frac{1}{n} \sum_{d|n} \frac{2^d}{d} = O\left(\frac{2^{n/2}}{n}\right),
\]

so

\[
I_n = \frac{2^n}{n} + O\left(\frac{2^{n/2}}{n}\right). \tag{6.9}
\]

From this we see that \(I_n\) roughly doubles with \(n\) (cf. Table 6.2), since

\[
\frac{I_{n+1}}{I_n} = \frac{\frac{2^{n+1}}{n+1} + O\left(\frac{2^{n+1/2}}{n+1}\right)}{\frac{2^n}{n} + O\left(\frac{2^{n/2}}{n}\right)} = \frac{\frac{2}{n+1} + O\left(\frac{2^{1-n/2}}{n+1}\right)}{\frac{1}{n} + O\left(\frac{2^{-n/2}}{n}\right)} \rightarrow 2.
\]

The main term of \(\zeta(n)(1-2^{-n})\) in (6.6) is \(3^{-n}\). The exponent \(I_n\) slows down the convergence by a factor of 2. Therefore the product converges like \((\frac{2}{3})^n\) or gives about \(\log_{10}\left(\frac{2}{3}\right) \approx 0.18\) decimal digits per term.

This is satisfactory, but we can do better than that. In (6.5) we can introduce an arbitrary prime number \(q \geq 3\) to obtain

\[
\log C_2 = \sum_{m \geq 2} \frac{2-2^m}{m} \sum_{p \geq 3} p^{-m} = \sum_{m \geq 2} \frac{2-2^m}{m} \left(\sum_{p \leq q} p^{-m} - \sum_{3 \leq p < q} p^{-m} \right) = \sum_{m \geq 2} \frac{2-2^m}{m} P_q(m) - \sum_{m \geq 2} \sum_{3 \leq p < q} \frac{2-2^m}{mp^m}.
\]

Using the same method as before, the first term will be

\[
\log \prod_{n \geq 2} \left[\zeta_{\geq q}(n)\right]^{-I_n}.
\]
On the other hand, the second term is

$$\sum_{m \geq 2} \sum_{3 \leq p < q} \frac{2 - 2m}{mp^m} = \sum_{3 \leq p < q} \sum_{m \geq 1} \frac{2m - 2}{mp^m} =$$

$$= \sum_{3 \leq p < q} 2 \log \left(1 - \frac{1}{p} \right) - \sum_{3 \leq p < q} \log \left(1 - \frac{2}{p} \right) =$$

$$= \sum_{3 \leq p < q} \log \left(1 - \frac{1}{(p-1)^2} \right) = \log \prod_{3 \leq p < q} \left(1 - \frac{1}{(p-1)^2} \right).$$

This gives us the following:

$$C_2 = \prod_{3 \leq p < q} \left(1 - \frac{1}{(p-1)^2} \right) \prod_{n \geq 1} [\zeta_q(n)]^{-I_n}, \quad (6.10)$$

or even more concisely:

$$\prod_{p \geq q} \left(1 - \frac{1}{(p-1)^2} \right) = \prod_{n \geq 1} [\zeta_q(n)]^{-I_n},$$

which is a formula for a value of a “tail” in the product defining C_2.

By the same analysis as before, the convergence of (6.10) is of order $\frac{2}{q}$. For example, if we take $q = 23$, then

$$C_2 = \frac{1836515055375}{2751882854400} \prod_{n \geq 1} [\zeta(q(n))]^{-I_n}, \quad (6.11)$$

which produces more than one decimal digit per each term.

The mpmath library already has an implementation of this algorithm using $q = 11$. We use formula with $q = 59$ to compute C_2 to a high precision. With this parameter we observed a noticeable acceleration of calculation. This can be seen in Figure 6.1. The new implementation runs almost twice as fast as the old one, but nevertheless the time required is exponential with respect to the required precision.

The twin prime constant C_2 was computed to 15000 decimal places. It took 210 hours (almost 9 days) to perform this computation.

Constant value

\[C_2 = 0.66016181584686957392781211001455649319448423363045642304 \]

\[4969743776031413096799177061266693040236584777561323602277476857132131 \]

\[9896597410979303382241353764342831343969788933623653252907971193032474590 \]

\[33040036692963084430635619909939664675604781233979067945981 \]

\[834236500700395708044841173629876096936987630808384243308300011966979750 \]

\[0004407762786371081810601401523394467794456131236444581003689997663238084 \]

\[0810108183056252613401987112336393209782349722342049714269174644522636 \]

\[549394094377179507734948778919566899601899420708768080138039303936378082 \]

\[15239076261564966773365994976903789067659786761690832426600257611092099633708 \]

\[272265228467120989801114807949518656182442998874934471118282838369907050208 \]

\[726701997860662210981504743650239592942820143115102329761415149215422242 \]

60
Figure 6.1: Comparison of the two implementations to compute the twin prime constant C_2. The new one runs almost two times faster.
6.3 Computation of Brun's constant

Analysis

We don't know a formula for Brun's constant apart from the very series that define it, that is,

$$\sum_{p+p^2} \left(\frac{1}{p} + \frac{1}{p+2} \right)$$

This sum converges very slowly and we cannot be sure even about the first places after the decimal point. The contribution, even from the terms with large primes, is too huge.

63
We generated pairs of twin prime numbers up to 10^{10} and computed their inverses. The computation was done using 1000 decimal places of working precision. It took few hours to get the result.

Pentium FDIV bug

In 1994, Thomas Nicely has found a bug in a model of Pentium processor while computing the Brun's constant. The bug called “Pentium FDIV bug” became apparent when Nicely found some inconsistencies in his computations. The problem was indeed very rare, but possible. It manifested itself when specific pairs of floating pairs of numbers very divided by each other. For example when dividing 4195835 by 3145727, one obtains

$$1.333820449136241.$$

However, the flawed processor would return

$$1.333739068902037,$$

which is incorrect at the fourth digit after the decimal point. Intel, the manufacturer of the processor, was reluctant to resolve the issue, but finally decided to launch a total recall of the flawed processors. See [32] for the whole story and more information.

Constant value

$$B_2 = 1.78747850271924154627334881129323801868347082870490276443896$$

6.4 Summary

We introduced the problem of computing constants related to the Twin Prime Conjecture. The twin prime constant has a convenient series that can be used to compute it to a desired precision, yet the computation still takes the exponential time to finish.

A much more complicated problem is to compute Brun's constant B_2. To the author's knowledge, there are no known formulas other than the definition itself.
Chapter 7

Summary

In this thesis we presented the Twin Prime Conjecture and prime sieving algorithms. We proved some theorems on the twin primes, their characterization and distribution, and relation to other, mostly also unsolved, problems in the number theory. In particular, we showed Brun's theorem that states that the sum of reciprocals of twin primes converges. Moreover, we contrasted the current knowledge about this conjecture with state-of-the-art algorithms for prime sieving. Finally, we performed analysis of approaches used to compute related numerical constants and time consuming computations thereafter. As a result, we obtained the value of the twin prime constant to a very high precision.

For the prime sieving algorithms, the question remains open if there exists an algorithm that can achieve the theoretical bound on the running complexity of $O(n/\log n)$. There is no algorithm known that achieves that bound. If it is not possible to achieve this bound, a proof of this fact would be a step forward.

We also are not aware of a practical way to obtain value of Brun's constant to a high precision. The series that define the constant are very slowly convergent and there is no obvious way to accelerate the convergence as it is possible with the twin prime constant.

The Twin Prime Conjecture remains unproven, but definitely there are serious attempts to prove it. It's not clear, however, if the problem can be ultimately resolved with the help of sieve methods. The deep and complicated work of Chen resulted in a near miss attack on the conjecture, but nothing substantially important was proven since then in the domain of twin primes. There is however serious interest in the research about small prime gaps, a subject that may result in the result related to the Twin Prime Conjecture. For example, it has been conditionally proven (assuming Elliott-Halberstam Conjecture) that there exist infinitely many primes whose difference is 16 or less (22).

There has been a lot of successful research on the Twin Prime Conjecture and empirical evidence confirms it, but the main question remains open:

Are there infinitely many twin primes?
List of Theorems

1. Infinitude of primes .. 5
2. Mertens’ Second Theorem ... 6
3. Legendre’s Theorem ... 6
4. Bertrand’s postulate, Chebyshev’s Theorem 7
5. Bounds on the first Chebyshev function 7
6. Abel’s summation formula ... 9
7. Euler’s summation formula ... 10
8. Asymptotic formula for the harmonic series 10
9. Stirling’s approximation formula 11
10. Mertens’ First Theorem .. 11
11. Mertens’ Third Theorem ... 14
12. Weak Mertens’ Third Theorem 14
13. Prime Number Theorem ... 15
14. Green-Tao Theorem .. 23
15. Wilson’s Theorem .. 23
16. Clement’s Theorem on twin primes 24
17. Generalization of Clement’s Theorem 25
18. Characterization of twin primes by multiplicative functions 27
19. Sergusov’s Theorem .. 28
20. On the quadratic form $x^2 + 4y^2$ 35
21. On the quadratic form $x^2 + 3y^2$ 35
22. On the quadratic form $3y^2 - x^2$ 36
23. On the quadratic form $4x^2 + 3y^2$ 38
24. Chen’s Theorem I ... 43
25. Chen’s Theorem II .. 45
26. Chen’s Theorem III ... 45
27. Asymptotic formula for the number of squarefree numbers ... 48
28. Brun’s Theorem .. 50
29. Brun’s Theorem II .. 53
30. Brun’s Theorem III ... 54
31. On polynomials with coefficients from GF(p) 58
Bibliography

